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ABSTRACT: The aim of this study is to present a general 
procedure to calculate, from SNP markers, the covariances 
between individuals due to additive, dominant and epistatic 
effects, e.g. “additive x dominant genomic relationships”. 
The proposed method expands the orthogonal approach 
called NOIA and does not assume Hardy-Weinberg equilib-
rium. It is thus applicable to, e.g., crosses. A real mice data 
set was used to illustrate its implementation. Estimated 
variance components show that epistatic interactions may 
explain an important portion of the overall genetic variabil-
ity for some traits of interest, such as growth speed. Some 
of the potential applications of the procedure within the 
genomic selection scope are briefly discussed.  
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Introduction 
 

Since the advent of massive genotyping platforms, 
genomic evaluation models usually fit marker additive 
effects, either explicitly (Meuwissen et al., 2001; Van 
Raden, 2008; De los Campos et al., 2009) or implicitly 
through the “genomic” relationship matrix (Van Raden, 
2008; Goddard, 2009). However, it is possible that domi-
nance or higher order interaction terms play an important 
role in the genetic determinism of some traits of economic 
interest in livestock or plants. The existence of non-
negligible interactions is supported by the wide application 
of crossbreeding as a breeding strategy. Further, it is known 
that the use of assortative mating can improve the perfor-
mance of livestock and crop traits when dominance or epi-
stasis is present (Toro and Varona, 2010). 

 
In livestock populations, one of the main reasons 

why dominance or higher order interaction terms have not 
been estimated is that pedigree relationships are not enough 
informative. Recently, genomic data have renewed the 
interest in the prediction of non-additive genetic effects (Su 
et al., 2012; Vitezica et al., 2013; Nishio and Satoh, 2014), 
because it is much easier to work with dominance in view 
of heterozygote genotypes at the individuals. 

 
Higher order interaction terms can be also mod-

eled by using the “genomic” relationship approach, but a 
general framework for calculation of relationships matrices 
is needed. In particular, cited developments apply to popu-
lations in Hardy-Weinberg equilibrium but not to popula-
tions like F1, backcrosses or three-way crosses. In this 
study, we develop a completely general procedure to esti-
mate “genomic” relationship matrices for interactions terms 
of any order expanding the natural and orthogonal (NOIA) 

approach (Álvarez-Castro and Carlborg, (2007)) within the 
scope of the covariance between individuals and we discuss 
some of the potential applications of the procedure. 

 
Materials and Methods 

 
Theory. A model including additive, dominant 

and higher order interaction terms can be written as: 
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where y is the vector of phenotypic records, a and d are the 
vector of additive and dominant effects, oij is vector the ijth 
second order epistatic effect and pijk is the ijkth third order 
epistatic effect and so on. The epistatic effects can be sub-
divided according to the interaction involving breeding 
values (A) or dominance deviations (D). For instance, there 
are three types of the ij second order epistatic effect: AxA, 
AxD and DxD. Further, T, X, Kij and Mijk are incidence 
matrices that include the covariates that link the genetic 
effects with the phenotypic records. In fact, there are sever-
al available parameterizations for these covariates. For 
instance, for the additive and dominant effects and follow-
ing Su et al. (2012) the elements of T and X can be defined 
as 1, 0, -1 and 0, 1, 0 for genotypes A1A1, A1A2 and A2A2, 
respectively. An alternative parameterization was proposed 
by Vitezica et al. (2013) that define the elements of T and 
X as (2-2p), (1-2p), -2p and -2q2, 2pq and -2p2 for geno-
types A1A1, A1A2 and A2A2, respectively. Further, Vitezica 
et al. (2013) proved that both approaches are equivalent and 
identified the effects of the first approach as the “biologi-
cal” additive and dominant effects and, for the second, as 
the “statistical” substitution effects and dominant devia-
tions. 

 
With higher order epistatic effects, the coefficients 

included in matrices Kij and Mijk can be also defined under 
several approaches (Cockerham, 1954). Furthermore, Álva-
rez-Castro and Carlborg (2007) defined a general frame-
work to obtain orthogonal estimates of genetic effects using 
different reference points (e.g. a particular genotype). Un-
der a simple additive and dominant model for one locus A, 
the coefficients of T and X can be calculated by the follow-
ing locus genetic-effect design matrix: 
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where p11A, p12A and p22A are the genotypic frequencies 
for the genotypes A1A1, A1A2 and A2A2 for the locus A. 
Note that under the assumption of Hardy-Weinberg equilib-
rium this design matrix reduces to the “statistical” approach 
of Vitezica et al. (2013), but it also applies to populations 
not in such equilibrium. Following Álvarez-Castro et al. 
(2007), the coefficients for second order epistatic effects 
between locus A and B can be calculated by the Kronecker 
product between design matrices SA and SB: 

 
BABA SSS ⊗=×
	
  

	
  
and, subsequently, for third and higher order epistatic ef-
fects as: 

	
  
…CBACBA SSSS ⊗⊗=××
	
  

 
However, it should be noted that the definition of a 

model to estimate second or higher order epistatic effects 
involves a quadratic or cubic increase of the number of 
effects to be estimated. To solve that problem, the “ge-
nomic” relationship matrix approach (VanRaden, 2008; 
Goddard, 2009) allows to develop a model that include only 
a genetic effect of each additive, dominant or epistatic term 
for each individual, after the definition of an appropriate 
“genomic” relationship matrix for each one. From the out-
put of the SAxB design matrix, the “genomic” (co) variance 
relationship matrices will be computed as: 
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where X take the values A, D, AxA, AxD and 

DxD in the case of second order epistatic effects. In the 
case of the additive effects for the locus A, the elements of 
the h vector for the ith individual are: 
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And for the dominance matrix are: 
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Further, the elements of the vector h for the ijth 

additive x additive combination of loci A and B is calculat-
ed from the elements the corresponding column of SAxB 
matrix as:  

 

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−−−
−−−−
−−−−
−−−−
−−−−
−−−−
−−−−
−−−−
−−−−

=

2222

2122

1122

2221

2121

1121

2211

2111

1111

)222122)(222122(
)222121)(222122(
)22212)(222122(
)222122)(222121(
)222121)(222121(
)22212)(222121(
)222122)(22212(
)222121)(22212(
)22212)(22212(

BBAAforpppp
BBAAforpppp
BBAAforpppp
BBAAforpppp
BBAAforpppp
BBAAforpppp
BBAAforpppp
BBAAforpppp
BBAAforpppp

h

BBAA

BBAA

BBAA

BBAA

BBAA

BBAA

BBAA

BBAA

BBAA

ij

 

 
where p11B, p12B and p22B are the genotypic frequencies 
for the genotypes B1B1, B1B2 and B2B2 for the locus B. 
Similarly, the elements of the h vector for additive x domi-
nant and dominant x dominant matrices can be calculated 
from the elements of the appropriate column of SAxB.  

 
Given the availability of the “genomic” relation-

ship matrices, the following linear model can be assumed:  
 

y =Wb+ZgA +ZgD +ZgAA +Zg AD+ZgDD +Sc+ e  
 
where b is the vector of systematic effects, gX is the vector 
of the X genetic effect (A, D, AA, AD and DD), c is the 
vector of any other random environmental effect and e is 
the vector of the residuals. Further, W, S and Z are the 
incidence matrices. The gX and c vectors are assumed to 
follow a multivariate Gaussian distribution with the appro-
priate covariance matrix, calculated as described: 
 
 ( )2, XXX N σG0g = 	
   	
   ( )2, cN σI0c =  
 

Mice Data analysis: Legarra et al. (2008) ana-
lyzed phenotypes of mice data 
(http://mus.well.ox.ac.uk/mouse/HS/), composed by 1884 
phenotypic records for different traits (such as growth speed 
and body length) and including 10,946 markers. We have 
reanalyzed the data for the two traits, with the same model 
of estimation as Legarra et al. (2008) that included a gen-
eral mean and a random cage effect. Estimation was per-
formed by a Bayesian approach using flat priors for the 
variance components and a Gibbs sampling algorithm. A 
single long chain of 100,000 iterations was run, after dis-
carding a burn-in period of 25,000 iterations.  

 
Results and Discussion 

 
The results of the ratios of variance explained by 

the additive, dominant, additive x additive, additive x dom-
inant and dominant x dominant effects are presented in 
Table 1. 
 
Table 1. Ratios of additive, dominant, additive x addi-
tive, additive x dominant and dominant x dominant 
variances. 

 2
ah  2

dh  2
axah  2

axdh  2
dxdh  

Growth 
Speed 

0.022 
(0.014) 

0.012 
(0.008) 

0.037 
(0.030) 

0.058 
(0.049) 

0.060 
(0.047) 

Body 
Length 

0.109 
(0.031) 

0.008 
(0.006) 

0.038 
(0.032) 

0.046 
(0.038) 

0.061 
(0.048) 



Additive genetic variance explains most of the ge-
netic variation for body length, whereas the epistatic genet-
ic effects represent a relevant percentage of variation for 
growth speed. However, the posterior standard deviation for 
epistatic variance components is much higher, as reflected 
in Figure 1. The additive and dominance genetic variances 
were well estimated and results agree with Vitezica et al. 
(2013).  
 

 
Figure 1. Posterior densities ratios for the additive (solid 
line) and additive x dominant (dotted line) variance for 
growth speed. 
 

 
The use of non-additive genetic effects in animal 

breeding is mainly devoted for the exploitation of heterosis 
in cross-breeding schemes. In this context, several ap-
proaches have been proposed to obtain prediction of the 
performance of candidates to selection, mimicking the 
classical reciprocal recurrent selection approach (Kinghorn 
et al., 2010; Zeng et al., 2013). 

 
The distribution of the genetic variance into addi-

tive, dominant and interaction terms is strongly determined 
by the allelic or genotypic frequencies, and redistribution of 
variance between them is expected when alternative geno-
typic frequencies are used. In this study, “genomic” vari-
ance component were calculated by using the observed 
population genotypic frequencies as reference for the calcu-
lation of the S design matrix for each locus. However, the 
NOIA model proposed by Alvarez-Castro and Carlborg 
(2007) allow for an easy transformation of those matrices 
into alternative reference points R2, by the application of 
the following equation: 

*
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where, SR2 is the design matrix under the new ref-

erence point for every locus, SR1 is the previous design 
matrix, I* is the identity matrix with the first scalar replaced 
by zero, PR2 is the change of reference matrix for the new 
reference point, which takes the form: 
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where p*11, p*12 and p*22 are the genotypic fre-
quencies for the new reference point. Further research must 
be done to explore the possibilities of transformation for the 
“genomic” (co) variance matrices into alternative reference 
points, and, thus, to obtain predictions of the additive and 
non-additive genetic effects under the scope of a cross-
breeding scheme. Also, the accuracy of these predictions 
must be investigated. 
 

Conclusion 
 

 A procedure for calculation of “genomic” relation-
ship matrices for second and higher order epistatic effects is 
presented. The procedure was applied to a mice data set, 
where a relevant percentage of variance was assigned to 
epistatic genetic effects for growth speed. 
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