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ABSTRACT: Genomic selection (GS) is widely 
implemented in livestock breeding due to its potential to 
accelerate genetic progress. Recently, results of genome 
wide association study (GWAS) are accumulated for most 
livestock species. Are these GWAS results useful for GS or 
not? We validated their usefulness with a dairy cattle 
population using a BLUP|GA model. Genotypes and 
phenotypes of 2,000 bulls and a cattle QTL list from 
animalQTLdb were used. We compared the accuracy of 
BLUP|GA and GBLUP with five-fold cross validation. 
Results showed that the public GWAS results can improve 
the accuracy of GS via BLUP|GA. BLUP|GA outperformed 
GBLUP for traits with large effect genes. Both the prior 
knowledge of QTL counts and p value were useful to 
improve GS accuracy. BLUP|GA deserved further 
investigations for species for which GWAS results are 
publically available. 
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INTRODUCTION 
Predicting unknown phenotypes or genetic values 

for complex traits is an interesting and fast developing area 
in the context of human disease studies as well as in animal 
and plant breeding. In this context, genomic selection (GS) 
(Meuwissen et al. (2001)) and genome wide association 
studies (GWAS) (Klein, et al. (2005)) were widely used 
approaches. Both use genomic and phenotypic data in a 
combined analysis. Though hundreds of GWAS were 
conducted for each common livestock species, which 
results potentially reveal the genetic architecture of 
complex traits in a comprehensive manner and should be 
potent in improving GS, these GWAS results could not be 
directly used to improve GS with usual genomic selection 
method (de Los Campos et al. (2012)). Recently, the new 
model BLUP|GA proposed by Zhang et al (2014) can link 
abundant GWAS results to GS. The objective of this 
research was to evaluate the performance of BLUP|GA in 
different ways of incorporating GWAS results.  

 
MATERIALS AND METHODS 

Data. Genotypic data of 5,024 German Holstein 
bulls were genotyped with the Illumina Bovine SNP50 
Beadchip. After quality control (MAF > 0.01, call rate > 
0.95), 42,551 SNPs were remaining for further analyses. 
Conventional estimated breeding values for milk fat 
percentage (FP), milk yield (MY) and somatic cell score 
(SCS) with reliabilities greater than 70% were available for 
all bulls. These three traits represent three different possible 
genetic architectures of complex traits. We chose 2,000 
bulls with the highest reliabilities in the trait MY to 
decrease the computing time. In order to consider the 

scenarios with even smaller population size, we randomly 
selected a subset of 500 and 125 individuals out of these 
2,000 individuals. 

The list of GWAS and QTL mapping results for 
dairy cattle was obtained from animalQTLdb (Hu et al. 
(2007)) (http://www.animalgenome.org/QTLdb, Release 
22). The number of SNPs from the genotype data which 
were located in these QTL regions and the number of QTL 
reports for these SNPs are counted and employed as GWAS 
results in further analyse.  In this study, the marker weights 
were calculated as sum of QTL counts or sum of -
log(p_value, 10). 

Model. The statistical model for the genomic 
BLUP approach is eZgXy ++= µ . The GBLUP approach 
assume ),0(~ 2Gg gN σ , and c/TMIMG =  (VanRaden 
(2008)). Hence, GBLUP assumed that all markers in M 
contributed equally. However, this may not be proper for all 
complex traits. Based on GBLUP, we proposed to use 
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vector of marker weights obtained from GWAS results. It 
should be noted that the S matrix was built only for a sub 
set of large effect markers (N=m1), and these markers were 
selected according to the publicly available GWAS results 
accessed from animalQTLdb. The matrix S is supposed to 
capture the genetic architecture part for the trait under 
consideration. Further note that T equals G for 0=ω . We 
named this method BLUP|GA (“BLUP approach 
conditional on the Genetic Architecture”). The variance 
components were estimated via a combined AI-EM 
restricted maximum likelihood algorithm via the DMU 
software package (Madsen et al. (2008)). 

Model validation. Five-fold cross-validation (CV) 
procedure and accuracy was used to assess the predictive 
ability of GBLUP and BLUP|GA. For all scenarios, the 
five-fold CV was replicated 20 times, resulting in 20 
average accuracies. The accuracy was defined as the 
Pearson correlation coefficient between traditional 
estimated breeding value and genomic estimated breeding 
values.   

 
RESULTS AND DISCUSSION 

In this study, predictive ability of GS was 
measured via five-fold cross-validation procedures, 
applying the BLUP|GA approach with genetic covariance 
structure given by the trait-specific variance-covariance 
matrix T. The weights h for the m1 markers in T were 
chosen based on counts of how often a marker was reported 
to be within a significant QTL region during association 
studies previously carried out in the literatures, a 
knowledge we retrieved from publicly available QTL 



databases. We set different thresholds to the counts of a 
marker to obtained three QTL lists, and build T matrix with 
them. We compared the accuracy of BLUP|GA with the 
standard GBLUP approach.   

The result clearly showed that BLUP|GA 
performed better than GBLUP (the left point of each line 
with 0=ω , Figure 1) for FP and MY, but not for SCS.  
This trend is valid for all scenarios with different 
population sizes and different QTL lists. This suggested 
that GWAS results can help to improve the accuracy of GS 
via BLUP|GA. It is also clear that the accuracy for FP is 
higher when we used p values to build the S matrix than 
that of QTL count. This implied that a strength weighting 
vector h is needed for traits with significant QTLs. 

The difference between BLUP|GA and any other 
GS approach is that BLUP|GA can model any “existing 
knowledge” about the genetic architecture of complex  
 
 
 
 
 
 
 
 
 
 
 

traits, including publicly available GWAS or QTL mapping 
results. This can be achieved by building the S matrix 
according to a list of important markers and their 
corresponding weights which are obtained from “existing 
knowledge”, then build the T matrix as a weighted sum of S 
and G, finally predict the genetic value of all individuals by 
solving the mixed model equations, in which the covariance 
structure is given by the T matrix. Hence, an important step 
for BLUP|GA is the selection of SNPs to build S. These 
SNPs should lie in trait associated chromosomal regions 
and their corresponding marker weights should represent 
their relative contributions to the genetic architecture of the 
trait under consideration. In the present study, the SNPs 
was chosen according to the times that it was reported be 
within a QTL region, and the counts or p value was used to 
be the weights in S. However, the ways to select significant 
markers and weights used to build S are not limited to the 
rules we proposed in this study. BLUP|GA provided a port 
for all kinds of existing knowledge about the genetic 
architecture to the prediction model, and should be 
validated in more situations. 

 
CONCLUSION 

The BLUP|GA is a special GS model that can link 
publicly available GWAS results to GS. Via the BLUP|GA 
model, GWAS results can help to improve the accuracy of 
GS. Hence, the existing publicly available GWAS result 
can well reflect the genetic architecture of a complex trait. 
The advantage of BLUP|GA depends on the characteristic 
of the genetic architecture underlying a complex trait and 
the comprehensiveness of the public knowledge on that 
trait. BLUP|GA outperformed GBLUP for two out of the 
three traits and GWAS p values were better than QTL count 
while building S. The BLUP|GA approach deserves further 
investigations for species where GWAS results are 
publically available. 
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Figure 1: Accuracy of BLUP|GA and GBLUP for milk 
yield, milk fat percentage, and somatic cell score for 
scenarios with different population size and different 
weights. 
 


