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ABSTRACT:  
In most countries, genomic evaluations are obtained from 
within-breed analyses. New Zealand (NZ) is an exception 
that has been doing genomic evaluations using a multi-
breed reference population, including purebred and 
crossbred individuals, since 2007. This paper summarizes 
across-breed genomic prediction experiences in NZ. A 
number of areas are discussed including, breed stratification 
found in the SNP data, the prediction of breed proportions 
from SNPs, methods for building a multi-breed genomic 
relationship matrix (GRM) and the accuracy of across-
breed genomic prediction from different across breed 
GRMs.  In the NZ population, accounting for the 
population structure in the GRMs had little effect on the 
validation accuracies and inflation measures from genomic 
selection analyses. It is suggested that prediction models 
that utilize breed-specific haplotype blocks based on high 
density SNP chips, along with a large training population, 
may improve genomic prediction in multi-breed 
populations. 
Keywords: dairy cattle; genomics; crossbreeding 
 

Introduction 
 

Genomically enhanced breeding values are widely 
used for the selection of young dairy sires. In most 
countries, the genomic predictions are from within-breed 
analyses using a single-breed reference population. Unlike 
other countries, New Zealand (NZ) has purebred 
populations, as well as a large crossbred population, that 
have been evaluated using a multi-breed animal model 
since 1996.  The incorporation of genomic data provides 
additional challenges in a multi-breed analysis.  Genomic 
relationships are a function of allele frequencies, which 
may differ among breeds because of different origins and 
selection pressures.  We will refer to differences in allele 
frequencies across breed as breed stratification.  In 
pedigree-based genetic evaluations, the numerator 
relationship matrix (NRM) accounts for relatedness, but not 
breed effects.  The breed effects are modeled using genetic 
groups.  When combining pedigree and genomic 
relationships, we need to maintain the separation of breed 
and relatedness and therefore take account of the 
stratification when incorporating genomics.  

 The first genomically enhanced breeding values 
(GBVs) in NZ were calculated using a two-step method 
(vanRaden, 2008) in which direct genomic values were 
calculated using the breed-adjusted genomic relationship 
matrix of Harris and Johnson (2010).   

In beef cattle, within-breed SNP estimation has 
shown to be of limited value for the genomic prediction of 
other breeds, (Saatchi and Garrick, 2013). In dairy cattle De 
Roos et al. (2009), Ibanez-Esciche et al. (2009), Pryce et al. 

(2011) and Schrooten et al. (2013) have shown that across-
breed genomic evaluations are more accurate than within-
breed evaluations. The closer the genetic distance between 
the breeds and the greater marker density, the greater the 
improvement in accuracy, assuming consistency of QTL 
and SNP marker phase and marker effect size.   

Crossbreeding in NZ dairy industry has been 
steadily increasing since the early 1980s.  The crosses are 
mainly between the Holstein Friesian and Jersey breeds. In 
2013, the proportion of crossbreed heifer calves reared was 
47%, compared to 37% and 9.3% for Holstein Friesians and 
Jerseys, respectively. In 2001 progeny tested crossbred sires 
became available to the NZ industry.  This paper will focus 
on across-breed genomic prediction in NZ. 
The objectives of this paper are to investigate: 

1. Breed stratification in genomic data, 
2. The prediction of breed proportions using genomic 

data, 
3. Methods for building a multi-breed genomic 

relationship matrix (GRM), and  
4. The accuracies of multi-breed genomic prediction 

from different GRMs. 
 

Breed Stratification 
 

Genotypes were obtained from the Illumina 
BovineSNP50 Beadchip panel.  There were 34,963 SNPs 
after removing SNP for low call rates, minor allele 
frequencies ≤ 2%, non-Mendelian inheritance, failed 
Hardy-Weinberg tests and low imputation accuracy. Data 
on 16,437 sires containing three black and white strains, 
Jerseys (J) and their crosses were used to explore breed 
stratification.   The black and white strains are categorized 
as Holsteins (HOL), Holstein Friesians (HF) and Friesians 
(FR) based on a decreasing fraction of recorded overseas 
ancestry. The black and white strains will collectively be 
referred to as the Holstein/Friesian Breeds (HFB).  Breed 
categories were defined based on being at least 15/16ths of 
the given breed.  The percentages for each breed category 
were 11% HOL, 2% FR, 34% HF 29% J and 24% FJ, the 
latter representing crosses between HFB and Jerseys.  Only 
data from sires were used because of high certainty of 
recorded breed. The posterior mean of allele frequency was 
calculated within breed category, assuming a uniform prior 
on [0,1], as 𝑝𝑗 = (1 + ∑ 𝑔𝑖𝑗𝑖 )/(2 + 2𝑁), where gij is jth the 
genotype (coded 0, 1 or 2 indicating allele dosage) of the ith 
animal and N is the number of animals.   

The correlations between estimated allele 
frequencies are given in Table 1. The correlations among 
the HFB were higher than those between the HFB and J, 
reflecting the known breed differentiation.  The lowest 
correlation was between J and HOL. Between-breed 
differences of the allele frequencies were calculated. Values 



of +1.0 or -1.0 indicates that alternate alleles are fixed in 
the two breeds.  Figure 1 shows box plots for the 
distribution of these differences between J and HOL, FR 
and HOL, and FR and J. The largest differences were 
between J and HOL and smallest between FR and HOL, 
reflecting the genetic distances among the pure breed 
categories. 

 

 
 
Figure 1: Distribution of estimated allele frequency 
differences between three purebred categories. 

 
 
 

Table 1. The correlations between estimated allele 
frequencies for five breed categories.  
Breed§ HOL J FJ FR 

J 0.65    
FJ 0.85 0.91   

FR 0.87 0.71 0.88  
HF  0.95  0.70  0.91  0.94 

§HOL = Holstein, J = Jersey, FJ = HF  x Jersey, HF = Holstein x FR, and 
FR = Friesian 

 
Principal components analysis can be used to 

explore population stratification by identifying major axes 
of variation (Price et al., 2006). Let M be the normalized 

genotype matrix with elements 𝑔𝑖𝑗/�𝑝𝑗�1 −  𝑝𝑗�, where gij 

is the jth genotype of the ith individual and pj is the 
frequency of the jth allele.    Major axes of variation are 
described by the eigenvectors with the largest eigenvalues 
of the matrix MMT.  These axes of variation can describe 
the nonrandom breed and pedigree structure within the 
population (Daetwyler et al., 2012). Of the 16,437 
eigenvalues, the largest 4659 explained significant (P  < 
0.05) amounts of variation based on the TW statistic 
(Patterson et al., 2006). The first two of these were 
significant at a level of P < 10-12. These two principal 
components are shown in Figure 2.  The first component 
differentiates the HFB strains from J, with the FJ being 
intermediate between the two breeds. The second 
component differentiates among the HFB strains, clearly 
distinguishing between the HOL and FR strains, with the 
HF positioned in between these two. However, each of the 
first six major axes of variation differed significantly (P < 
0.05) between breed categories. The last four of these axes 

also explained variation caused by individual sires having 
large half-sib families within the population structure, 
similar to Daetwyler et al. (2012).  

 
 

 
Figure 2: Two largest axes of variation of the sire SNP 
data. 

 
 

Prediction of breed from SNPs 
 

Multi-breed genomic evaluation requires accurate 
identification of breed composition of individual animals. 
In NZ, the breed composition of progeny test sires is known 
with the greatest degree of accuracy. Increasing numbers of 
female genotypes are being included in the reference 
population (Harris et al., 2013). For a large number of these 
genotyped females only the sire is genotyped and the 
possibilities of pedigree and breed composition errors exist. 

Accurate prediction of breed composition based on 
SNP data has been demonstrated by Kuehn et al. (2011) and 
Frkonja et al., (2012) for admixed cattle populations. 
Frkonja et al., (2012) employed various prediction methods 
including Bayes B, LASSO and PLSR, and found 
correlations of 0.93-0.97 when predicting the proportions of 
Simmental and Red Holstein Friesian in Swiss Fleckvieh 
cattle. Kuehn et al., (2011) found accuracies ranging from 
89 to 83% in beef breed crosses from genomic BLUP 
predictions of breed using the Bovine 50k and 3k SNP 
panels, respectively. 

Genomic BLUP was used to predict the proportion 
of HF and HOL identified by pedigree records in the 16,437 
sires using the selected Bovine 50k SNPs. A cross-
validation study was undertaken where the training 
population was defined as a random half of the data and the 
remaining data was the test population. This process was 
repeated 100 times. The accuracy and the bias of prediction 
were calculated for each sample. The average accuracy of 
prediction was 0.99 for both HF and HOL proportion with 
an average bias of 0.009 and 0.012 (deviation from an 
expected regression of 1.0) for HF and HOL, respectively. 
Finally, genomic BLUP was used to calculate SNP 
solutions from the entire sire dataset and these solutions 
were applied to 64,946 cow genotypes. The correlation 
between the SNP-based breed prediction and the pedigree-
record breed proportion was 0.94 and 0.88 for HF and 
HOL, respectively. Figure 3 illustrates the Mahalanobis 



distance plot between the SNP-predicted and pedigree- 
recorded HF proportion for cows. Observations above the 
red line in Figure 3 are viewed as outliers in terms of 
difference between the predictions based on SNP and 
pedigree HF proportion. The red line in Figure 3 is 
positioned at a Mahalanobis distance of 2.5, values above 
2.5 are considered outliers. Approximately 3.9% of the 
cows would be considered as outlier observations. These 
cows may need to be excluded from the genomic evaluation 
because they would have incorrect genetic breed group 
solutions obtained from the traditional genetic evaluation. 
Another option would be retain the genotypes but replace 
the pedigree breed proportions with SNP based predictions. 

 

 
Figure 3: Mahalanobis distance between SNP-predicted 
and pedigree-recorded HF breed proportion for 64,946 
cows. 

 
 

Estimation of multi-breed genomic relationship 
matrices 

 
In dairy cattle, genomic relationships based on 

genome wide SNP data are used to estimate genomic 
breeding values (GBV), where the genomic relationships 
replace, or are combined with, the pedigree-based 
relationships. In some approaches, the calculation of the 
GRM requires estimates of the base-population SNP 
frequencies. This is straightforward in single breed 
populations but more complicated in multi-breed 
populations because SNP frequencies differ by breed and 
crossbred animals descend from more than one population.   
We discuss four methods of creating genomic relationships 
in a multi-breed population.   

The first method (Harris and Johnson, 2010) is 
based on regressing the MMT matrix on the expected value 
for the NRM, after taking into account the covariance 
between relatives in a multi-breed population. The 
covariances between relatives are calculated based on the 
methods outlined by Luo et al. (1993) using breed origins 
of known ancestors of the genotyped individuals. This 
method is computationally intensive, but feasible, for a 
relatively small population of genotyped animals (for 
example, all genotyped bulls within an evaluation). 
However, the required Cholesky decomposition is too 
computationally demanding for large genotyped 
populations, as would be the case when tens of thousands of 
cows are genotyped.  

The second method (Makgahlela et al., 2013) is 
based on adjusting the genotypes using current or base 
population estimates of allele frequencies specific to breed 
type. This method was applied in the current study. The 
GRM was calculated as M*M*T/m, where m is the total 
number of SNP and  

𝑀𝑖𝑗
∗ = �𝑔𝑖𝑗 − 2𝑝𝑖𝑗�/�𝑝𝑖𝑗�1 − 𝑝𝑖𝑗�  

where pij is the jth allele frequency corresponding to the 
breed composition of animal i.  The pij values were 
estimated using linear regression. HF and J allele 
frequencies were estimated within the HF, J and FJ 
populations separately and also across all data.  The 
concordance between the estimates from all data and the 
purebred data sets was high with correlations of 0.999 and 
standard deviations of the difference in estimates of 0.011 
and 0.013 for HF and J estimates, respectively.  Lower 
values were obtained if only FJ animals were used, with 
correlations of 0.991 and 0.986 and standard deviations of 
the difference in estimates of 0.04 and 0.051 for HF and J 
estimates, respectively. Figure 4 shows the distributions of 
Jersey allele frequency differences estimated from all the 
data (N=16,437) or 5351 FJ compared to 4509 Jersey sires. 
Although the correlations from the FJ data compared to the 
Jersey are high, there are substantial differences in 
estimated allele frequency for a number of SNP, with the 
extremes in the ± 0.2 range.  
 

 
 
Figure 4: Distributions of Jersey allele frequency 
differences estimated from the all the sire data 
(n=16,437) or 5351 Jersey-Holstein Friesian compared 
to 4509 Jersey sires. 

 

The third method used the Euclidean distance 
matrix (EDM) in a Gaussian kernel, as proposed by Gianola 
and van Kaam (2008).  Harris et al. (2011) used the EDM in 
a multi-breed genomic evaluation. The advantage of using 
the EDM, instead of the GRM, is that the EDM does not 
require information on individual breed proportions or 
within-breed base allele frequencies. The Gaussian kernel 
transforms a distance measure into a correlation as  



Exp(-dij/h), where dij is the Euclidean distance between 
individuals i and j, and h is bandwidth parameter.  Thus, the 
larger the difference between individuals, the smaller the 
correlation, with zero distance corresponding to a 
correlation of unity.    The EDM has the advantage of being 
positive definite even when the number of individuals is 
greater than the number of SNP, provided there are no 
identical twins in the SNP data. One disadvantage of the 
EDM is that the diagonal elements are unity regardless of 
the degree of inbreeding.  Another disadvantage is that the 
EDM is not directly comparable to the NRM. 

A fourth method to build a multi-breed GRM is 
based on the procedure outlined by Price et al. (2006).  
Genotypes are adjusted for major axes of variation that 
explain breed stratification in SNP data. The method adjusts 
each SNP by using the axes of variation as covariates in a 
multiple regression analysis. This can be calculated 
efficiently as 𝑀� = 𝑀 − 𝐸𝐸𝑇𝑀, where the M�  is the adjusted 
SNP marker matrix, E is the matrix of eigenvectors and M 
is SNP marker matrix. This method is valid only when the 
eigenvectors are calculated on the same SNP data including 
all individuals otherwise a multiple regression SNP by SNP 
is required. The adjusted SNP marker matrix is used to 
calculate the GRM as 𝑀�𝑀�𝑇/𝑚 . This method has the 
advantage that the breed information is removed without 
the use of the pedigree. The disadvantages of this method 
are that the calculation of the eigenvectors can be 
computational demanding large data sets and the 
assumption of two major axes may not remove all of the 
breed information but the use of more than two may remove 
pedigree structure as well as breed stratification. 

The accuracy of across-breed genomic 
prediction from the use of different across breed GRMs 

 
Evaluations were obtained for the different GRMs. The 
GRMs described in the previous section, except the GRM 
outlined Harris and Johnson (2010) that was 
computationally infeasible, were calculated using NZ male 
and female genomic data.  Additionally a GRM that ignored 
breed stratification was calculated. The analyses included 
all of LIC's genotyped bulls born in 2007 or earlier, a 
selection of CRV Ambreed (another AI company in NZ) 
genotyped bulls and genotyped females born in 2006 or 
earlier.  The phenotype for all analyses was the deregressed 
BV (DRBV) as described in Harris and Johnson (2010).  
The genomic analyses were run using the DRBV for protein 
yield that would have been available at the end of season 
2008. Genomic BVs were from calculated from a hybrid 
single-step method (Harris et al. 2013). This method has the 
advantage of providing a computationally efficient genomic 
evaluation using traditional national DRBV, rather than 
phenotypic records, as the starting point. A preconditioned 
conjugate-gradient method is used to solve these equations 
after first using matrix inversion to calculate the inverse of 
the GRM and associated partitioned A matrix. 

In NZ, a season starts in June and ends in May the 
next year. Hence, an animal calving in season 2008 finishes 
her lactation in 2009. Sires born in seasons 2005, 2006 and 
2007, whose first-crop daughters completed their first 

lactations in seasons 2009, 2010 and 2011, respectively, 
were the test population. Their genotypes, but not their 
phenotypes, were included in the analyses. Validation 
followed the procedure of (Mantysaari, 2010). The 
accuracy of prediction was calculated as the correlation 
between the deregressed progeny test BVs (obtained using 
data available at the end of season 2013) and GBVs of test 
animals. The inflation was assessed using the regression 
slope of traditional BVs on GBVs, a slope of unity 
indicating no inflation. Table 2 shows the breed 
composition of the training (sires born prior to 2005) and 
test sire populations. Table 3 shows the year of birth and 
breed composition of the cows with genotypes. Prior to 
2005, the female genotypes were available on bull dams. In 
2005 and 2006, the genotypes were mainly from cows in 
specialized progeny test herds. 

 
Table 2. The numbers of genotyped sire in the training 
and test data sets by breed. 
Type HF§ J§ FJ§ 

Training 3611 1816 367 
Testing 685 391 334 

§ J = Jersey, FJ = HF  x Jersey, HF = Holstein x Friesian 
 
 
 
Table 3. The numbers of genotyped cows in the training 
data set by year of birth and breed. 
Birth Year HF§ J§ FJ§ 
1990-2004 1773 347 222 

2005 3237 3146 1533 
2006 4096 4239 1887 

§ J = Jersey, FJ = HF  x Jersey, HF = Holstein x Friesian 
 

 
 

Discussion 
In this study accounting for the population 

structure in the GRMs has little effect on the validation 
accuracies and inflation measures. Similar results were 
found by Makgahlela et al., (2013) and Makgahlela et al., 
(2014). Thomasen et al., (2013) found that including breed 
information in a genomics study containing US and Danish 
Jersey cattle improved the genomic predictions. However, 
including population structure, derived from SNP data, in 
the prediction model did not improve reliabilities of the 
genomic predictions.  Daetwyler et al., (2012) attempted to 
decompose the accuracy of genomic selection from 
population structure or linkage disequilibrium in a multi-
breed sheep population. They found accounting for 
population structure via the use of eigenvectors from the 
genomic relationships decreased the accuracy of genomic 
prediction for most breeds. We also found lower genomic 
prediction accuracies when the GRM was adjusted by the 
first two eigenvectors to remove breed stratification. It is 
conceivable that adjusting by the GRM for major 
eigenvectors removes population structure other than breed 
stratification such as structure relating large to half sib 
families and within family selection. Previous results from 
genomic evaluation in the NZ, comparing models for 
evaluating a multi-breed population, suggested a genetic 



architecture of many QTL with small effects (Harris et al., 
2011). The results suggest that a considerable proportion of 
the genomic prediction accuracy is due to population 
structure rather than LD between SNP markers and QTL. 
Removing population structure via eigenvector adjustment 
of SNP markers is likely to lead to decreased genomic 
prediction accuracy. 

Genomic prediction has been applied successfully 
in single-breed dairy cattle populations such as the large 
Holstein populations in North America and Europe. Less 
success has been achieved in smaller populations and in 
admixed or multi-breed populations. This could be due to a 
combination of factors: insufficient training populations, 
larger effective population sizes and low levels of LD 
between SNP markers and QTL. For the NZ population, the 
genomic prediction accuracy obtained from the multi-breed 
analysis is higher that obtained by within-breed analysis 
(Harris et al., 2011) and higher than that obtained by parent 
average from traditional genetic evaluation. Similar results 
have been reported by Schrooten et al., (2013) for the 
Holland Genetics genomic program in NZ. The 
improvement in accuracy of multi-breed analysis compared 
to the within-breed analysis is likely to be function of the 
increased training population size in the multi-breed 
analysis. Harris et al., (2103) reported increases in the 
levels of genomic prediction accuracy as large numbers of 
females were added to the NZ training population, 
suggesting that the training population size in NZ is still 
suboptimal for multi-breed genomic prediction. 

There may be genetic mechanisms that account for 
lower genomic prediction accuracy in multi-breed analyses 
than in single breed analyses. The current multi-breed 
genomic models assume homogeneity of QTL and SNP 
marker phase and marker effect size across breeds and 
between the training and test populations. The greater the 
genetic distance between breeds the less likely this 
assumption is maintained due to genotype-by-genetic 
background interactions (de Roos et al., 2009). Also, Deng 
(2001) has suggested that population admixture can conceal 
the underlying QTL effects. It was thought that increased 
SNP marker density was required to adequately model LD 
across breeds. Multi-breed analyses undertaken by Su et al. 
(2011) and Harris et al. (2011) comparing 50K SNP panels 
with 800K SNP panels showed little improvement in 
accuracy. However, it is questionable whether the training 
population sizes used in these studies had sufficient 
statistical power to exploit the increase in marker density. 

The majority of multi-breed genomic prediction 
studies have used GRMs or EDMs based on arrays of 
individual SNPs. The use of high density SNP data to form 
haplotype blocks for use in a multi-breed genomic analysis 
could improve the accuracy and remove the need for 
homogeneity of QTL and SNP marker phase and marker 
effect size. If the SNP marker density is sufficient to 
produce breed-specific haplotype blocks that are associated 
with the QTL alleles segregating within a given breed, then 
a greater proportion of the genetic variance will be 
explained by the haplotype blocks within a multi-breed 
model. 

 
 

Conclusion 
 
Multi-breed genomic prediction is a challenging 

area of research. The results to date have lower accuracy 
compared to then those achieved from large within-breed 
genomic analyses, particularly in the Holstein breed. The 
breed stratification in the admixed populations can be 
categorized by examination of the eigenvectors on the 
relationship matrices. The breed content for individual 
animals can be predicted with a high degree of accuracy 
from SNP data using simple GBLUP analyses. Adjusting 
GRMs to take account of breed information or the use of 
EDMs in multi-breed genomic prediction models provides 
only small improvement in accuracy or reduction of 
inflation in the resulting GBVs compared to ignoring breed. 

A number of factors could potentially result in the 
lower accuracies: small training population size, large 
effective population sizes for admixed populations, low 
levels of LD between SNP markers and QTL making the 
implicit assumption of homogeneity of QTL and SNP 
marker phase and marker effect sizes. Prediction models 
that utilize breed-specific haplotype blocks based on high 
density SNP chips and the inclusion of large numbers of 
females in the training populations may improve the 
prediction accuracies by mitigating the above factors in the 
analyses. 

 
Table 4. The accuracy of the genomic breeding values 
for different genomic relationship matrices (GRM). 
Breed‡ IGN§ MAK§ EDM§ EVA§ 

HF 0.60 0.63 0.62 0.55 
FJ 0.62 0.64 0.64 0.50 

Jersey  0.70  0.73  0.73  0.55 
§ IING = GRM ignoring breed, MAK = multibreed GRM (Makgahlela et 
al. (2013), EDM = Euclidean distance matrix, EVA = eigenvector adjusted 
GRM 

‡ J = Jersey, FJ = HF  x Jersey, HF = Holstein x Friesian 
 
 
 
Table 5. The bias of the genomic breeding values for 
different genomic relationship matrices (GRM). 
Breed‡ IGN§ MAK§ EDM§ EVA§ 

HF 0.96 1.01 0.99 0.77 
FJ 1.03 1.04 0.99 0.63 

Jersey  1.09  1.08 1.06  0.72 
§ IING = GRM ignoring breed, MAK = multibreed GRM (Makgahlela et 
al. (2013), EDM = Euclidean distance matrix, EVA = eigenvector adjusted 
GRM 

‡ J = Jersey, FJ = HF  x Jersey, HF = Holstein x Friesian 
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