
Proceedings, 10th World Congress of Genetics Applied to Livestock Production 
 

Parallel Computing for Mixed Model Implementation of Genomic Prediction and Variance Component Estimation 
of Additive and Dominance Effects 

 
Chunkao Wang1, Dzianis Prakapenka2, H. Birali Runesha2, Yang Da1 

1Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA 
2Research Computing Center, The University of Chicago, Chicago, IL 60637, USA 

 
ABSTRACT: We developed the GVCBLUP package using 
shared memory (SM) and Message Passing Interface (MPI) 
parallel computing for genomic prediction and variance 
component estimation using mixed model methods. The 
GREML_CE and GREML_QM programs in the package 
offer complementary computing advantages and identical 
results of GBLUP and GREML along with heritability 
estimates using a combination of EM-REML and AI-
REML algorithms. GREML_CE was designed for large 
numbers of SNP markers and GREML_QM for large 
numbers of individuals. For the SM version, GREML_CE 
could analyze 50,000 individuals with 400K SNP markers 
and GREML_QM could analyze 100,000 individuals with 
50K SNP markers. For the MPI version, GREML_CE was 
tested for 50,000 individuals with 1 million SNP markers 
and 100,000 individuals with 41K SNP markers.  
Keywords: genomic selection, variance component, 
heritability, BLUP 
 

Introduction 
Genomic prediction using genome-wide single 

nucleotide polymorphism (SNP) has become a powerful 
approach to capture genetic effects dispersed over the 
genome for predicting an individual’s genetic potential for a 
phenotype (Meuwissen et al., 2001; VanRaden et al., 2009). 
Genomic estimation of variance component using genome-
wide SNP markers is a powerful tool for estimating the 
genetic contribution of the whole-genome to a phenotype 
and for addressing the missing heritability problem where a 
large number of causal variants explained only a small 
fraction of the phenotypic variation (Yang et al., 2011; Da 
et al., 2014). The purpose of this research is to develop 
parallel computing tools to implement two computationally 
complementary computing strategies for genomic 
prediction and variance component estimation of additive 
and dominance effects with a wide-range of flexibility and 
functionality.   

 
Materials and Methods 

Two complementary computing strategies. We  
implemented two sets of formulations with complementary 
computing advantages and identical results based on two 
equivalent mixed models, the CE set for large numbers of 
markers (m>q) and the QM set for large numbers of 
individuals (q>m) (Da and Wang, 2013; Da et al., 2014), 
where m = number of SNP markers, and q = number of 
individuals. Several methods for calculating genomic 
relationships were implemented. 

Shared memory parallel computing. GVCBLUP was 
programmed in C++ language using Eigen and Intel Math 
Kernel libraries (MKL). Eigen is a C++ template library for 
linear algebra, supports large dense and sparse matrices and 

supplies easy-to-use coding expression for linear algebra, 
which was used for creation, transformation of matrices. 
Intel MKL provides BLAS and LAPACK linear algebra 
routines and is optimized for Intel processors with multiple 
cores by using shared memory parallel computing 
technology, which is used for dense matrix inversion. 

MPI distributed shared memory implementation. A 
parallel version of the GVCBLUP (GREML-CE) has been 
implemented using MPI between compute nodes and shared 
memory parallelism within the node. The early MPI 
implementation is written in Fortran90 using 2D block 
cyclic distribution to scatter large matrices among given 
nodes. The ScaLAPACK library, a set of high-performance 
linear algebra routines for parallel distributed memory 
machines using MPI message-passing layer, BLACS 
communication subprograms, and BLAS routines, is used 
for generalized matrix inversion. The code was compiled 
with Intel MKL version of the library and leverages shared-
memory parallelization for the cores in one node when 
allocated one MPI task per node. This approach decreases 
memory requirements per node to process larger data sets.  

EM and AI-REML. A combination of EM type of 
REML (EM-REML) and AI-REML was implemented. AI-
REML generally is much faster than EM but is not robust 
as EM. We required at least two iterations of EM-REML 
and the user may specify a larger number of EM-REML 
iterations before switching to AI-REML. The program 
automatically returns to EM-REML if AI-REML yields a 
negative estimate for any of the variance component 
estimates. This strategy is designed to guarantee estimates 
of variance components to be positive. 

Calculation of SNP heritabilities: Both GREML_CE 
or GREML_QM can output additive and dominance marker 
effects as well as additive and dominance marker 
heritbilities for every SNP marker. For SNP i, additive 
heritability or heritability in the narrow sense ( 2

ihα ), 

dominance heritability ( 2
ihδ ) and the total heritability or 

heritability in the broad sense ( 2
iH ) are: 

2m

1i
2
i

2
i

2
y

2
i

2
i h)ˆ/ˆ(/h α=αα ∑ αα=σσ=   

2m

1i
2
i

2
i

2
y

2
i

2
i h)ˆ/ˆ(/h δ=δδ ∑ δδ=σσ=   

+= α
2

i
2
i hH 2

ih δ    

where iα̂ = GBLUP of additive effect of SNP i, iδ̂ = 

GBLUP of additive effect of SNP i, 2
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phenotypic variance, 2hα  = additive heritability of all SNP 

markers, and 2h δ  = dominance heritability of all SNP 
markers. The output file for the SNP effects and 
heritabilities was designed such that those results can be 
directly used as the input file for graphing and graphical 
viewing by SNPEVG2 (Wang et al., 2012). 

Results and Discussion 
 

Structure of GVCBLUP. The GVCBLUP package 
has three main programs, GREML_CE, GREML_QM and 
GCORRMX (Figure 1). This short article will focus on 
GREML_CE and GREML_QM. 

 
 
Figure 1. Structure of the GVCBLUP package.  
(m = number of SNP markers, q = number of individuals) 
 
 GREML_CE and GREML_QM programs. The 
GREML_CE and GREML_QM programs calculate 
GREML estimates of additive, dominance and residual 
variances, additive and dominance heritabilities, as well as 
heritability in the broad sense, which is the summation of 
the additive and dominance heritabilities. GBLUP and 
reliability of breeding value, dominance deviation and 
genotypic value (summation of breeding value and 
dominance deviation) of each individual in the training or 
validation population are calculated at the end of variance 
component estimation. Assuming one observation per 
individuals, GREML_CE is more efficient than 
GREML_QM if 2m>q and is less efficient than 
GREML_QM if q>2m, where q = number of individuals 
and m = number of SNP markers. The example in Table 1 
shows the complementary computing advantages of 
GREML_CE and GREML_QM. Both programs had 
identical results and required the same numbers of 
iterations. For 1000 individuals and 3000 SNP markers, 

GREML_CE required 5 seconds and GREML_QM 
required 69 seconds, whereas for 3000 individuals and 1000 
SNP markers, GREML_CE required 32 seconds and 
GREML_QM required 6 seconds (Table 1).  
 
Table 1. Computing time (seconds) using GREML_CE 
and GREML_QM for simulated datasets1. 

 

 q=1000 
 m=3000 

q=3000 
m=1000 

CE QM CE QM 

Number of iteration 10 10 7 7 
Total time 5 69 32 6 

1 Run on a personal computer (PC) with Intel Core i7-2600 
(4 cores) of 3.40GHz and memory of 8.00GB. 

 
Given q = 2m, the required memory storage of 

GREML_QM is approximately 1.5 times larger than 
GREML_CE, but GREML_QM is faster than GREML_CE 
due to the fact that GREML_CE requires twice as many 
matrix multiplication between large dense matrices. The 
shared memory parallel computing of GREML_CE and 
GREML_QM achieved excellent scalability on ItascaSB 
cluster in which each node contains two eight-core Sandy 
bridge E5-2670 processor chips (2.6 GHz) and 256 Gb 
memory and run Linux operating system.  

 
Table 2. Capacity and speed of GREML_CE and 
GREML_QM for genomic estimation of additive, 
dominance and residual variances (tolerance = 10-8) on 
ItascaSB supercomputer. 

 CE CE QM QM1 
q 20,000 50,000 200,000 100,000 
m 1 million 400K 10K 50K 
Matrix 
creation 

3.7 hrs 6.0 hrs 14.9 min 0.33 hrs 

Total time 4.8 hrs 23.2 hrs 2 hrs 45.8 hrs 
No. of 
iterations 

12 13 20 20 

 1Not including computing time for GBLUP reliabilities. 
 
The SNP input and the calculations of genomic 

relationships matrices (Ag and Dg) required more computing 
time than per iteration of the estimation step. For shared 
memory parallel computing, GREML_CE was able to use 
50,000 individuals with 400K SNP markers with total 
computing time of 23 hours for 13 iterations. For 20,000 
individuals with one million SNP markers, GREML_CE 
only required 4.8 hours. GREML_QM was highly efficient 
for using low-density SNP markers, requiring only 2 hours 
for 200,000 individuals and 10K SNP markers. For 100,000 
individuals with 50K SNP markers, GREML_QM required 
about 46 hours for 20 iterations (Table 2).  

The implementation of the AI-REML algorithm for 
both GREML_CE and GREML_QM resulted in fast 
convergence rate, requiring between 12-20 iterations to 
converge with a strict tolerance level of 10-8, compared to 
295-458 iterations using EM-REML (Table 3). Although 
AI-REML was fast, extreme heritability levels (0 or 1) may 
cause failure of AI-REML. For eight of ten replications 



with null heritability, AI-REML failed, but the variance 
components still can be estimated with EM type algorithm 
with large number of iterations. AI-REML was successful 
for all replications with heritability of 0.3 (Table 3). 
 
Table 3. Comparison of iteration numbers of EM-
REML and AI-REML (tolerance = 10-8) using simulated 
data with different heritability levels. 

Replicate 
0.0h,0.0h 22 == δα  3.0h,3.0h 22 == δα  

EM-
REML 

AI-
REML 

EM-
REML 

AI-
REML 

1 173 -1 322 9 
2 481 18 458 10 
3 138 - 295 10 
4 1000 10001 431 11 
1AI-REML failed.  

 
Preliminary results of the MPI implementation indicate 

that MPI is a promising computing solution to remove the 
computing bottleneck for large-scale genomic estimation 
requiring matrix inversions. For the two cases that the SM 
version cannot compute, the MPI version completed the 
computations easily on an Infiniband SandyBridge HPC 
Cluster (2.6Ghz-32G mem) with 16 cores per node. Each 
iteration required 9.5 minutes for 50,000 individuals with 1 
million SNP markers using 60 nodes and required 98 
minutes for 100,000 individuals with 41K SNP markers 
using 40 nodes with 16 cores per node (Table 4). The 
capability of the MPI version is expected to increase as the 
number of nodes increases.  

 
Table 4. Preliminary testing results of the MPI version 
of GREML_CE for genomic estimation of additive, 
dominance and residual variances (tolerance = 10-8). 

q (number of individuals) 50,000 100,000 
m (number of SNP markers) 1 million 41K 
SNP input, matrix creation 82 min 58 min 
Time per iteration 9.5 min 98 min 
Number of nodes 60 40 

 
GREML_CE and GREML_QM each has three output 

files for results of GREML, GBLUP, and SNP marker 
effects and heritabilities, in addition to screen displays. The 
GREML output files contain estimates and standard errors 
of variance components at each iteration, and the final 
estimates of variance components, heritabilities and their 
standard errors. The GBLUP output file contains GBLUP 
of  breeding values and dominance deviations, genotypic 
values, as well as the corresponding reliabilities for both 
training and validation populations. These GBLUP results 
were calculated using the GREML estimates at the last 
iteration. Both GREML_CE and GREML_QM have a user 
option to output SNP additive and dominance marker 
effects and heritbilities for every SNP. The SNP effects and 
heritabilities can be readily graphed and displayed by 
SNPEVEG2 (Wang et al., 2012) including Manhattan plots 
and graphical figures by chromosome using the absolute 
GBLUP values (Figure 2A and 2B), or log10 of SNP 
heritability (Figure 2C and 2D).  

 
 

Figure 2. Graphical viewing of SNP additive and 
dominance effects and heritabilities. A: Manhattan plot 
using the absolute GBLUP of additive effects. B: 
Chromosome 14 graph using the absolute GBLUP of 
additive and dominance effects. C: Manhattan plot of SNP 
additive heritabilities. D: Chromosome 14 graph using SNP 
additive and dominance heritabilities. (Dominance GBLUP 
values were all near zero, consistent with the fact that the 
phenotypic values for fat percentage were PTA values that 
are additive effects. The highly significant chromosome 14 
region is the DGAT1 region. The total additive heritability 
of SNP markers in the 1675278-4606904 Mb region of 
chromosome 14 including DGAT1 was 0.0248.) 

 
Conclusion 

The GVCBLUP package is a powerful and user friendly 
computing tool for assessing the type and magnitude of 
genetic effects affecting a phenotype by estimating whole-
genome additive and dominance heritabilities of a 
phenotype using genome-wide SNP markers. MPI is a 
promising computing solution to address the memory and  
computing bottleneck for large-scale genomic estimation 
requiring matrix inversions. 
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