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ABSTRACT: High-throughput genotype data have been 
extensively used to investigate the biological and genetic 
background of complex traits, such as obesity. However, 
results explaining complete genetic variation are limited. 
Systems genetics approaches are increasingly used to 
elucidate more of the currently limited knowledge of 
complex traits. Weighted Interaction SNP Hub (WISH) 
network method is a novel tool which is able to elucidate 
underlying biology and capture potential causal variants. 
Here we studied obesity, using systems genetics approaches 
in an F2 pig population. We created an Obesity Index (OI) 
based on multi-trait selection indexes containing nine 
obesity-related phenotypes, to perform a GWAS and WISH 
network analysis. WISH detected several modules 
associated with OI. Functional annotation revealed several 
genes (e.g. NPC2) and pathways (e.g. the insulin signaling 
pathway) which were (in-)directly related to obesity. This 
study shows the potential for systems genetics analysis of 
high-throughput genotype data for obesity. 
 

Introduction 
High-throughput genotype data (HTG) are 

extensively used for complex traits and diseases in genome-
wide association studies (GWAS) to find genes associated 
with the trait of interest. Unfortunately, to date the detected 
loci explain a limited amount of the genetic variation in 
many complex traits (Manolio et al. (2009)), as well as do 
not provide holistic understanding of the systems genetics. 
Obesity is a complex trait that is associated with various 
serious diseases (e.g. type 2 diabetes and various types of 
cancer). Because of the exponential rise in the prevalence of 
obesity, and its financial, social and welfare consequences, 
the urge for a decent biological and genetic knowledge is 
rising. Here, we use a porcine model for human obesity, 
since the pig has similar metabolic, digestive and 
cardiovascular features, and it resembles humans more than 
rodents (Spurlock and Gabler (2008)). We have created an 
F2 pig population, and demonstrated the potential of this 
population to study human obesity (Kogelman et al. 
(2013)).    

In complex diseases, it has been indicated that 
gene x gene interactions may have a key role, which is not 
taken into account in GWAS (Cordell (2009)). Systems 
genetics approaches, which include the effect of interacting 
alleles and their functional/biological role, may reveal more 
of the biological and genetic background of complex traits 
and diseases (Kadarmideen et al. (2006)); Civelek and 
Lusis (2013); Do et al. (2014)). Several network approaches 
have been developed to understand the interaction of genes 
and their influence on complex diseases (Segal et al. 
(2003); Diez et al. (2010)). Recently, we published the 
Weighted Interaction SNP Hub (WISH) network method 
based on HTG, which makes it possible to identify clusters 

of highly interconnected SNPs (modules) that are related to 
disease risks or a phenotype (Kogelman and Kadarmideen 
(2014)). The WISH network method detects those modules 
using the interconnectedness between SNPs, based on 
genotype interactions. Functional annotation and pathway 
analysis of detected modules may lead to the identification 
of biologically relevant pathways underlying those 
phenotypes.  

In the present study, we applied systems genetics 
approaches in the F2 pig resource population, to unravel 
pathways and detect potential causal obesity genes. This 
included a GWAS and WISH on OI; and pathway profiling 
and functional enrichment analyses on the resulting variants 
and SNP modules. These systems genetic approaches 
revealed novel biological and genetic determinants not 
otherwise identified only by GWAS.  

 
Materials and Methods 

Experimental design. We have created an F2 pig 
resource population (Kogelman et al. (2013)), by generating 
an intercross of two production breeds (Yorkshire and 
Duroc) and the Gӧttingen Minipig. While the production 
breeds are prone to leanness and muscle growth due to 
genetic selection, the minipigs are prone to obesity and 
share metabolic impairments seen in obese humans 
(Johansen et al. (2001)). The F2 population (454 pigs) was 
intensively phenotyped (e.g. weight, body confirmation, 
DXA scanning and slaughter characteristics) and genotyped 
using the Illumina Porcine 60K SNP Chip.   

Obesity Index. Multi-trait selection indexes, 
based on estimated breeding values (EBVs) for several 
traits of interest, are intensively used in animal breeding to 
determine extreme phenotypes (Cameron (1997)). We 
created the Obesity Index (OI) to determine the degree of 
obesity of the F2 animals, by calculating selection index 
weights and combining the EBVs for nine different obesity-
related traits (reported in Kogelman et al. (2013)) into one 
aggregate total merit index.  Traits selected for the OI were: 
weight and abdominal circumference at slaughter, average 
daily gain, estimated fat mass and percentage of fat at DXA 
scanning, back fat thickness at position 1 and position 2, 
weight of leaf fat and weight of omental fat at slaughtering. 
The OI followed, as expected, a normal distribution among 
the F2 animals.  

Genome-wide association analysis. A GWAS 
was performed using the R package GenABEL (Aulchenko 
et al. (2007)) to test associations between the SNPs and the 
OI. We ran the basic linear model without correcting for 
any effects, as the OI is constructed based on EBVs which 
are already corrected for the population structure and other 
fixed effects: y= μ+g+e, where y = OI, µ = the phenotypic 
mean, g = the SNP genotypes (codes as 0,1, and 2) and e = 
the model errors. We calculated the Bonferroni corrected p-



values resulting in a suggestive association at Padj = 1.32E-6 
(0.05/SNP number) and a highly significant association at 
at Padj = 2.64E-8 (0.001/SNP number).  

Combined linkage disequilibrium linkage 
analysis. Findings of highly significant regions in the 
GWAS were confirmed using a combined linkage 
disequilibrium linkage analysis (LDLA) approach, using 
the information of the intercross pedigree (paper presented 
in this conference by Pant et al.). Statistical significance 
was calculated via a likelihood ratio test of the full model 
(OI regressed over the phenotypic mean and Identity by 
descent probabilities of chromosomal segments flanked by 
successive marker pairs) vs. the null model (containing only 
the phenotypic mean). The Identity by descent probabilities 
were estimated using a linkage disequilibrium multi-locus 
iterative peeling algorithm described in Meuwissen and 
Goddard (2010). 

WISH network construction. We previously 
published and described the WISH network method 
(Kogelman and Kadarmideen (2014)). This method 
assumes that SNPs which are highly correlated with each 
other (clusters of SNPs, here termed modules), will work 
co-operatively in pathways. Because of computational 
limits the top 2500 SNPs were selected based on their 
genome-wide significance (GWAS) and connectivity (sum 
of correlations of a particular SNP with all other SNPs). 
The adjacency matrix was calculated as the Pearson’s 
correlations between SNP genotypes, raised to the power of 
5 to create a scale free network. A SNP dendrogram was 
created based on the topological overlap measure (TOM), 
representing the relatedness between SNPs, to identify 
clusters of highly interconnected SNPs (modules). The 
correlation between the eigenvalue of each module (1st 
principal component) and the phenotypes of interest (OI 
and other obesity related phenotypes) was used to create the 
Genome-wide Module Association Test (GMAT) for 
selection of potential biologically interesting modules.  

Systems biology analyses. All significant GWAS 
top SNPs and identified SNP modules by the WISH 
network were further analyzed by detecting overrepresented 
gene ontology (GO) terms and pathways. Genes located at 
the detected SNPs were obtained using the NCBI2R R-
package (available at http://cran.r-roject.org/web/packages/ 
NCBI2R/), using a flanking distance of 20 kB to cover the 
promotional regions of genes. 

For downstream analyses we used GOEAST 
(Gene Ontology Enrichment Analysis Software Toolkit, 
Zheng and Wang (2008)) and GeneNetwork 
(http://genenetwork.nl).  In GOEAST, the Gene Batch tool 
was used to import the gene symbols, and following the 
hypergeometric statistical test, with the Yekutieli multiple-
testing adjustment method, was performed to identify 
significantly overrepresented GO terms and corresponding 
pathways. GeneNetwork was used to identify 
overrepresented GO terms, KEGG pathways, phenotypes 
and tissues. The database is constructed using human, 
mouse and rate expression data. Gene functions were 
predicted against known pathways and gene sets in various 
biological databases. Overrepresentation of GO-terms and 
pathways was tested using the Mann-Whitney U test, and P-

values were afterwards corrected for multiple testing using 
the Bonferroni correction.  

 
Results and Discussion 

Genome-wide association analysis. The GWAS 
results were presented in a Manhattan plot (Fig. 1), showing 
1024 SNPs above the suggestive significance threshold 
(Padj=1.32E-6) and 404 SNPs above the highly significance 
threshold (Padj=2.64E-8).   

 
Figure 1. A Manhattan plot of GWA study single-locus P-values. 
The blue dash line indicates a suggestive significance threshold 
with adjusted Bonferroni correction at Padj=1.3E-6 and the red line 
indicates a highly significant threshold with adjusted Bonferroni 
correction at Padj=2.6E-8. 

 
Three of the most significant SNPs are rs81396056 

(P=9.09E-17), rs81238148 (P=1.13E-15) and rs81416774 
(P=2.56E-13), which are situated within the NPC2 gene, 
OR4D10 gene and CACNA1E gene, resp. The NPC2 gene 
is encoding a protein that plays a role in the regulation of 
cholesterol transport through the late endosomal/lysosomal 
system, affecting cholesterol homeostasis (Storch and Xu 
(2009)). The OR4D10 gene is an olfactory receptor gene, 
which are responsible for the perception of smell, through 
neuronal responses, and thereby affecting eating behavior 
(Nasser (2008)). The CACNA1E gene encodes a protein in 
a voltage dependent calcium channel. Variants in this gene 
have been associated with type 2 diabetes, insulin 
resistance, and impaired insulin secretion in non-diabetic 
subjects (Trombetta et al. (2012)). Highly significant 
GWAS results were confirmed by the LDLA approach.  

GeneNetwork finds various cellular, transport 
related processes, as e.g. the GO Biological Processes (BP) 
cell chemotaxis (P=6E-6), and the KEGG pathway 
endocytosis (P=1E-6). The associated phenotypes (according 
to the Mouse Genome Informatics (MGI) database) show a 
clear share for inflammatory related phenotypes, e.g. 
decreased inflammatory response (P=3E-5) and decreased 
macrophage cell number (P=4E-5). GOEAST detected a 
clear enrichment for GO terms associated with the 
glucose/insulin metabolism in the BP category, e.g. 
negative regulation of insulin secretion (P=2.39E-7) and 
cellular response to glucose stimulus (P=2.94E-11). Other 
overrepresented GO terms in the BP category were 
glycolysis (P=6.01E-7) and skeletal muscle fiber 
development (P=1.91E-5).  
 WISH network construction.  Using the WISH 
network method, we detected 17 modules of at least 50 
SNPs per module. Based on the GMAT (Fig. 2) we selected 
two modules for downstream systems biology analyses.   



 
Figure 2. GMAT of modules detected using the WISH network 
method, representing the positive (blue) and negative (red) 
correlations with obesity related phenotypes.  
 

The GeneNetwork workflow run on Tan module 
(GMATOI=0.51, 64 unique genes) revealed, various 
overrepresented phenotypes related to diabetes (i.e. 
increased susceptibility to autoimmune diabetes, P=4.13E-4; 
and abnormal pancreatic beta cell morphology, P =6.58E-

4). Those may be resulting from the overrepresented BP GO 
term branched chain family amino acid metabolic process 
(P =6.98E-5), as those amino acids are associated with the 
metabolic homeostasis (Wang and Guo (2013)).   

The GeneNetwork workflow run on the Lightgreen 
module (GMATOI=0.42, 47 unique genes) revealed the 
highly overrepresented GO process purinergic receptor 
activity (P=7.21E-25). Purinergic receptors have been 
implicated in several different functions as e.g., learning 
and memory, locomotor and feeding behavior, and sleep 
(Burnstock (2010)). One of the genes mainly causing the 
overrepresentation of this pathway is P2RX7, encoding the 
protein P2X purinoreceptor 7, which have been implicated 
in ATP-mediated cell death, control of receptor trafficking, 
and inflammation. Moreover, the P2X7 has been associated 
with diabetes, e.g. by its influence on the regulation of beta 
cells (Glas et al. (2009)). Furthermore, the BP category in 
GOEAST also shows the overrepresented GO term fructose 
2,6-bisphosphate metabolic process (P=3.95E-20), which 
activates the glycolysis pathway and inhibits the 
gluconeogenesis pathway, and consequently regulating 
glucose homeostasis. These results are also consistent with 
regulation of feed intake and weight gain in pigs (Do et al. 
(2014)).  

Future studies will include extension of the 
pathway analyses using the DEPICT (Data-driven 
Expression-Prioritized Integration for Complex Traits) 
method (Pers et al. (2013) 

 
Conclusion 

This study shows the potential of systems genetics 
methods that involve network and pathway based 
approaches to jointly use phenotypes and high-throughput 
genotype data. Particularly WISH method moves GWAS 
well beyond its scope to profile pathways and build 
underlying genome-wide genetic interaction networks 
involved in complex traits. We have shown that such an 

approach could lead to elucidating pathways and complex 
gene-gene interaction networks involved in obesity. We 
detected many diverse genes (e.g. NPC2 and OR4D10), and 
consequently many different pathways (e.g. glycolysis 
pathway) were distinguished. This study, to the best of our 
knowledge, is the first systems genetics analyses on a large 
scale porcine model in which a wide range of obesity traits 
has been investigated. Consequently, it has revealed much 
of the complexity of obesity as a disease and provides 
valuable biological insights into human obesity. 
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