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ABSTRACT: Advantages of using whole genome 
sequence data to predict genomic estimated breeding values 
(GEBV) include better persistence of accuracy of GEBV 
across generations and more accurate GEBV across breeds.  
The 1000 Bull Genomes Project provides a database of 
whole genome sequenced key ancestor bulls, that can be 
used for imputing sequence variant genotypes into 
reference sets for genomic prediction.  Run 3.0 included 
429 sequences, with 31.8 million variants detected.   
BayesRC, a new method for genomic prediction, addresses 
some of the challenges associated with using the sequence 
data, and takes advantage of biological information.  In a 
dairy data set, predictions using BayesRC and imputed 
sequence data from the 1000 Bull Genomes data were 2% 
more accurate than with 800k data, and we could 
demonstrate the method was able to identify causal 
mutations in some cases.  Further improvements will come 
from more accurate imputation of sequence variant 
genotypes and improved biological information.  
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Introduction 
Genomic prediction of breeding values is 

increasingly widely used in livestock breeding programs for 
dairy, beef, sheep, chickens and pigs (eg. Wiggans et al. 
2011, Saatchi et al. 2012, Daetwyler et al. 2012, Hawken et 
al. 2014, Wellman et al. 2013).  To date, most of these 
predictions have been based on arrays of approximately 
50,000 SNP.  The advantage of using whole genome 
sequence data for genomic prediction over such SNP arrays 
arises from the fact that with the sequence data, the actual 
casual mutations responsible for trait variation should now 
be in the data set.  This could have at least three benefits: 

1) Better persistence of accuracy of genomic 
predictions over generations, and less erosion of accuracy 
in genomic predictions for individuals that are less related 
to the reference set. It has become clear that much of the 
accuracy of current genomic breeding values, based on 
50,000 DNA markers, in fact derives from prediction of the 
effect of large chromosome segments that segregate within 
fairly closely related animals (eg. Habier et al. 2010).  As a 
result, the accuracy of the prediction equation rapidly 

decays over generations as large chromosome segments 
break up due to recombination.  If the causal mutations 
were identified using the sequence data, and the prediction 
equation was based on their effects, accuracy would persist 
over many more generations, and in more distantly related 
animals.  Macleod et al. (2014) and Meuwissen and 
Goddard (2010) could clearly demonstrate this in simulated 
sequence data.   

2) Higher accuracy of genomic predictions.  
One issue with the current SNP arrays (eg. 50k, 800k for 
cattle) is that the SNP have been selected to have a high 
minor allele frequency.  This means that the SNP arrays are 
less likely to have SNP in linkage disequilibrium with 
casual mutations where one of the alleles is at low 
frequency in the population.  If this variation from rare 
alleles could be captured with the whole genome sequence 
data, and exploited in genomic predictions, accuracy of 
genomic breeding value may be able to be improved in the 
order of 2-30%, depending on trait (Druet et al. 2014).  It 
should be pointed out that in populations with small 
effective population size, such as Holsteins, the gain in 
accuracy from using sequence data is likely to be limited, as 
the current 50k SNP arrays capture a large proportion of the 
genetic variance.  For example for milk production, Haile-
Mariam et al. (2013), and Jensen et al. (2012), the additive 
genetic variance captured by the 50k SNP was 80-90%.  
However, for some traits like fertility and survival, the 
genetic variance captured by SNP arrays is only ~ 60%, 
perhaps because there are more rare variants affecting these 
traits (Haile-Mariam et al. 2013).  For these traits gains in 
accuracy from using sequence data might be higher.        

3) More accurate genomic predictions across 
breeds. For a breed like Holstein dairy cattle, large 
reference populations have been assembled, leading to high 
accuracies of genomic predictions.  For other breeds, 
assembling such large populations is challenging, so using 
genomic information across breeds would be appealing.  
However, the accuracy of genomic predictions across 
breeds with the Bovine 50k array is close to zero, and this 
improves slightly when the 800k array is used (Erbe et al. 
2012).  With the whole genome sequence data, at least the 
causative mutations which do segregate across breeds could 
be captured and this information used in multi-breed 
genomic predictions.  A multi-breed reference population 



would be required to achieve this.  A multi-breed reference 
would also benefit from the fact that linkage disequilibrium 
across breeds is lower than that within breeds, so that 
causative mutations could be mapped more precisely (eg 
Raven et al. 2014).  So multi-breed reference combined 
with sequence data should be the best approach to achieve 
the potential benefits from sequence data stated above.   

Even for large breeds such as Holstein, across 
breed information can be very valuable, for instance for 
traits difficult to record such as feed efficiency, or for 
causal mutations at low frequency and therefore difficult to 
characterize  in the major breeds. 

In fact it becomes clear from the above that 
making best use of the sequence information in genomic 
prediction is actually a QTL mapping problem – the aim of 
both becomes to identify causative mutations.   

In this paper, we review the whole genome 
sequence data that is available, in cattle at least, from the 
1000 Bull Genomes Project, discuss challenges with using 
such data in genomic predictions and how they can be 
overcome.  We then present some preliminary results for 
accuracy of genomic predictions using sequence data.     

 
The 1000 bull genomes data set 

A large reference set of animals with phenotypes and 
genotypes is required to estimate the genomic prediction 
equation.  These reference sets must be large (10,000s) to 
achieve accurate genomic predictions, given the typical 
architecture of complex traits (large numbers of mutations 
of small effects).  Such large numbers of animals are 
unlikely to be sequenced in the near future.  An alternative 
strategy is to sequence key ancestors of the population, then 
impute the genotypes for the sequence variants into much 
larger reference sets with phenotypes and SNP array 
genotypes.  The 1000 Bull Genomes Project is building this 
database of sequenced key ancestor bulls for the bovine 
research community (Daetwyler et al. 2014).  Run3.0 of the 
project included 429 full genome sequences of key 
ancestors from 15 breeds, sequenced at an average of 10.5 
fold coverage, Table 1.  There were 31.8 million filtered 
sequence variants detected in the sequences, including 29.1 
million SNP and 1.7 million insertion-deletions (note that 
filtering does mean that some causative mutations, 
particularly those at very low frequency, may be filtered 
from the data set, and that we have only called SNP and 
Indel, see for example Dolezal et al. these proceedings and 
Guldbrandtsen et al. these proceedings for calling of other 
types of variant).  Various quality control steps were 
applied to determine both the accuracy of calling variants in 
the sequence data, and the accuracy of calling genotypes at 
the variants.  This included assessing the rate of opposing 
homozygote genotypes for sire-son pairs, and assessing the 
agreement between sequence genotypes and genotypes 
from an 800k SNP array in the sequenced bulls.  This was 
high, at 98.8%.  The variants were annotated into different 
functional classes, including intergenic and intragenic, 
synonymous and non-synonymous, and other classes, Table 
2A,B.  There was a considerable difference in allele 
frequency spectrum between the sequence variants, and the 
variants on the 800k Bovine HD Array, with many more 
sequence variants at low frequency.  Missense (non-

synonymous) variants were at more extreme allele 
frequencies than synonymous variants.           
 
Table 1.  Breeds and number per breed sequenced in 
Run 3.0 of 1000 Bull Genomes Project. 

Breed  Number 
sequenced 

Holstein 122 
Jersey 26 
Simmental 87 
Angus 54 
Swedish Reds 16 
Piedmontese 2 
Limousin 25 
Hereford 1 
Guelph Composite 9 
Finnish Aryshire 17 
Charolais 8 
Brown Swiss  43 
Belgian Blue 10 
Beef Booster 8 
All 429 

 
Table 2A.  Annotation of SNP from Run 3.0 of the 1000 
Bull Genomes Project.    

Annotation Number 
intergenic_variant 19277503 
intron_variant 7587343 
upstream_gene_variant 1007825 
downstream_gene_variant 879304 
missense_variant 119236 
synonymous_variant 109805 
3_prime_UTR_variant 68408 
splice_region_variant 22713 
5_prime_UTR_variant 12800 
stop_gained 3083 
splice_donor_variant 2391 
non_coding_exon_variant 9894 
splice_acceptor_variant 1629 
initiator_codon_variant 235 
stop_lost 105 
coding_sequence_variant 184 
stop_retained_variant 74 
mature_miRNA_variant 273 
nc_transcript_variant 70 
Total 29102875 
 
An interesting alternative approach to the strategy 

adopted by the 1000 Bull Genomes Project (sequencing key 
ancestors at moderate fold coverage) would be to use the 
same sequencing effort to sequence a very large number of 
individuals at very low fold coverage.  This strategy has 
been very successful in inbred plants like rice (Huang et al. 
2010).  However simulation suggests in outbred species 



(with heterozygote genotypes) a lower limit of 6 fold 
coverage is necessary to achieve accurate imputation of 
sequence variant genotypes into animals genotyped with 
SNP arrays (Druet et al. 2014).   

 
Challenges with using  

sequencing data in genomic prediction 
There are at least three challenges for dealing with 

whole genome sequence data for genomic predictions; the 
very large number of variants, achieving accurate 
imputation of sequence variant genotypes into animals 
genotyped with SNP arrays, and choosing a method to 
estimate the genomic prediction equation that makes best 
use of the sequence data.   

From Run 3.0 of the 1000 Bull Genomes Project, 
31.8 million variants were detected.  These variants were 
either SNP or short insertion deletions – other types of 
genetic variants which could potentially be causative 
mutations are more difficult to detect, for example novel 
mobile genetic element insertions (eg. Guldbrandtsen et al., 
this proceedings).  While 31.8 million variants could readily 
be used in genome wide association studies (GWAS), 
because the analysis is highly parallelizable, for genomic 
prediction methods this presents a significant challenge.  
One option is to use biological information to prioritise or 
filter variants.  This biological information comes in two 
forms, sites in the genome where variants are more likely to 
have an effect on any trait, for example coding regions or 
regulatory regions, and gene sets in which mutations are 
more likely to affect specific traits, for example genes 
expressed in mammary gland for milk production in dairy 
cattle.  For the first type of information, analysis of genome 
annotations for enrichment of GWAS hits (eg. significant 
SNP) has identified coding regions, particularly missense 
mutations and regions upstream and downstream of genes 
as enriched for trait associated variants in both humans and 
cattle (Kindt et al. 2013, Koufariotis et al. 2014).  More 
recently, in human studies, regulatory regions (which are 
often in these upstream and downstream regions), have 
been shown to be enriched for GWAS hits for disease traits 
(Maurano et al. 2012).  For the second type of information, 
“Atlases” of bovine gene expression provide a means of 
identifying potentially important gene sets. The atlases 
identify genes which are differential expressed across 
tissues, using either digital gene expression tags or RNA 
Sequence data (Harhay et al. 2010, Chamberlain these 
proceedings respectively).  The utility of both types of 
information for genomic prediction is demonstrated later in 
this paper.     
 Once a subset of sequence variants has been 
identified for further analysis, the next step towards 
genomic prediction is imputation of these genotypes into 
reference populations, typically already genotyped with 
SNP arrays.  A major challenge here is accurate imputation 
of rare variants.  To demonstrate this, we used cross 
validation within the 1000 bull genomes data set to assess 
the accuracy of imputation.  Randomly chosen subsets of 
sequenced Holstein animals had their sequence variant 
genotypes reduced to the 777K genotypes on the Bovine 
High density SNP array (there were 625,000 of these that 
were polymorphic and passed quality control).  Beagle4.0 

(Browning and Browning 2014) was used to impute full 
sequence variant genotypes in these animals (using all other 
sequenced animals as a reference).  While the accuracy was 
reasonable for variants with minor allele frequency greater 
than 5%, below this, accuracy of imputation rapidly 
declined, Figure 1.  This is in agreement with other studies 
on the same data (eg. Van Binsbergen et al. 2014).  Use of 
pedigree information only slightly improved accuracy of 
imputing rare variants (Figure 1), but other imputation 
programs may perform better with rare variants.  
Alternative methods are being developed to better utilise 
multiple breed information in imputation (Bouwman and 
Veerkamp these proceedings, Daetwyler et al. 2014).  
Improving the imputation accuracy of sequence variant 
genotypes, particularly rare variants, is necessary before the 
full advantage of sequence data for genomic predictions can 
be realized.  Imputation of rare variants is likely to be 
important, because for example non-synonymous variants 
tend to have low minor allele frequencies (Figure 1).                 
 The final challenge to be addressed is choice of 
statistical method to derive the genomic prediction equation 
that will make best use of the sequence data.  Best linear 
unbiased prediction methods (BLUP as described by  
Meuwissen et al. 2001, or it’s mathematical equivalent, 
GBLUP,  Habier et al. 2007), are unlikely to make the best 
use of sequence data for two reasons.  The first is that the 
prior used in these methods assumes all variants have an 
effect.  One of the main attractions of using sequence data 
is to identify the causal variants, and remove all other 
variants from the prediction equation.  The BLUP methods 
cannot arrive at this solution, as every variant will have a 
predicted non-zero effect derived from a single normal 
distribution.  Another problem with BLUP methodologies is 
that the severe shrinkage imposed means that the effect of a 
causative mutation is rarely captured by a single variant, 
rather the effect is split across several or many SNP (eg. 
Verbyla et al. 2009).   So we require methods that allow a 
proportion of the variants to have zero effect, and 
preferably a variable degree of shrinkage, such that 
moderate to large effects of causal mutations are not 
smeared across multiple variants that are in moderate LD 
with the QTL.  Methods which meet both these criteria 
include BayesB (Meuwissen et al. 2001), and BayesR (Erbe 
et al. 2012).  Both BayesB and BayesR have been tested on 
simulated sequence data (Clark et al. 2011 and Macleod et 
al. 2014), and lead to both higher genomic prediction 
accuracy and greater persistence of accuracy over 
generations than BLUP methods in those simulations.  A 
drawback of the Bayesian methods however is that they are 
typically implemented using Gibbs sampling, or Metropolis 
Hastings algorithms in the case of BayesB, and such 
sampling algorithms are costly in computing time with 
large number of variants, (eg. Van Binsbergen, this 
proceedings).  Alternatives to sampling such as expectation-
maximisation algorithms have been proposed for both 
BayesB (Shepherd et al. 2010), and BayesR (Wang et al. 
these proceedings).  These revised Bayesian methods can 
decrease computer processing time by up to 10 fold. 
 



 
Figure 1. Accuracy of imputing sequence variant 
genotypes by minor allele frequency (MAF), for 
Chromosome 26.  The accuracy of imputing genotypes 
was assessed by cross validation, where sets of 25 
Holstein animals were removed from the sequence 
dataset, and the genotypes for these animals were 
reduced to the genotypes that were on the Bovine HD 
array, then imputed all the sequence variants using 
Beagle4.  The correlation between the real sequence 
variants and imputed variants were then calculated.  
Pedigree information was either included in the 
imputation (with ped fitted) or not included (no ped 
fitted).   
 

Figure 2.  Accuracy of genomic prediction in the 
validation group of Red Holstein (Dutch origin) using 
either Australian Bulls only (Holstein and Jersey) or 
Australian Bulls and Cows (Holstein and Jersey) 
reference sets. The proxy for accuracy was the 
correlation between de-regressed MACE proofs and 
genomic predictions.  

 
Results from genomic prediction with  

sequence data, with and without biological knowledge 
The accuracy of genomic prediction using imputed 

sequence data was assessed using a reference population of 
16,214 Holstein and Jersey cows and bulls (3049, 770 
Holstein and Jersey bulls, and 8478, 3917 Holstein and 
Jersey cows, respectively).  The phenotypes were daughter 
trait deviations for bulls, and trait deviations for cows, for 

milk volume, fat kg and protein kg.  Phenotypes were 
weighted according to Garrick et al. (2009). 

The validation population was 873 Dutch Red 
Holsteins, with phenotypes represented by de-regressed 
Interbull proofs on the Australian scale.       

Genotypes were either imputed 632,003 SNP 
genotypes from the Illumina Bovine HD array, or imputed 
1,674,245 sequence variant genotypes, where the variants 
were within genes or +/- 2kb from gene start and stop 
positions (a crude filtering of variants on biological 
information).   Beagle 4.0 was used for imputation and one 
of all pairs of variants in complete linkage disequilibrium 
(r2>0.99) were pruned out.  

Prediction equations were derived using either 
BayesR (Erbe et al. 2012), modified to use weights 
(Kemper et al. these proceedings), or a new method 
(BayesRC) that incorporates biological information, 
(MacLeod et al. these proceedings).  BayesR assumes 
variant effects come from one of four normal distributions, 
one with zero variance (zero effect), and the other three 
with increasing variance.  BayesRC is a modified version of 
BayesR (Erbe et al. 2012, Kemper et al. these proceedings).  
The key modification in BayesRC requires that all variants 
used in the analysis are first allocated to one of several 
“classes” based on prior knowledge (for example non-
synonymous mutations versus synonymous mutations), and 
the frequency with which SNP effects come from one of the 
four normal distributions is estimated separately for each 
class of SNP. This allows, for instance, the possibility that 
non-synonymous SNPs have a non-zero effect more often 
than synonymous SNPs (details in MacLeod et al. these 
proceedings).  Biological information, used to define 
classes in BayesRC, was from two sources   

1) Genome annotations.  The three classes in 
BayesRC were then non-synonymous variants, (Table 
2A,B), variants in upstream and downstream regions and 
annotated microRNAs (Table 2A,B), or 800k (variants on 
the BovineHD array and not in the two classes above).  This 
analysis was called Seq_BayesRC,  

2) Micro-array experiments to identify a set of 
genes in mammary gland that were found to play a role in 
milk synthesis, (Vander Jagt 2012).  The classes here were 
1) non synonymous coding variants in differentially 
expressed genes in the micro-array experiments 2) all other 
variants in genes differentially expressed in lactation 
experiments, and 3) all other sequence variants.  This 
method was called Lact_BayesRC. 

We assessed the accuracy of prediction of BayesR 
using either the 800k genotypes (“800k”), using the 
imputed subset of sequence data (“Seq BayesR”) and 
Seq_BayesRC and Lact_ BayesRC.  The proxy for 
accuracy was the correlation of genomic predicted EBV and 
de-regressed proof in the 876 Red Holstein bulls.         

The largest increase in accuracy for all traits was 
as a result of including cows in the reference population (~ 
5%), Figure 2.  Using sequence variants gave a 2% increase 
in accuracy over the 800k genotypes, averaged over traits.  
The BayesRC method did not give noticeably higher 
accuracy of genomic prediction in this data set, but 
identification of a relevant gene set could be further 



improved by including information from RNAseq atlases 
(Chamberlain et al. these proceedings).   
 
Table 2B.  Annotation of Insertion deletions (Indel) 
from Run 3.0 of the 1000 Bull Genomes Project.    

Annotation  Number 
Intergenic 1135727 
intron_variant 460164 
upstream_gene_variant 64332 
downstream_gene_variant 57775 
3_prime_UTR_variant 4823 
frameshift_variant 1585 
splice_region_variant 1207 
inframe_deletion 998 
5_prime_UTR_variant 834 
inframe_insertion 349 
splice_acceptor_variant 160 
splice_donor_variant 120 
missense_variant 88 
non_coding_exon_variant 406 
coding_sequence_variant 59 
nc_transcript_variant 19 
stop_gained 8 
mature_miRNA_variant 45 
stop_lost 1 
Total 1728700 
 
The BayesRC method did lead to more precise 

mapping of QTL effects (MacLeod et al. these 
proceedings), which is critical for persistence of accuracy 
of genomic predictions over generations.  To assess the 
potential of BayesRC to identify causative mutations, we 
first investigated whether or not two previously identified 
mutations with effects on milk production traits were 
identified by the method.  These were a mutation in the 
DGAT1 gene with an effect on fat%, fat kg, and milk 
volume (Grisart et al. 2002), and a mutation in the promoter 
of the PAEP gene (previously called Beta Lactoglobulin) 
with effects on protein percentage (Braunschweig and Leeb 
2006).  Both mutations were more clearly identified in 
Lact_BayesRC, much more clearly than when BayesR was 
used, Figures 2 and 3 in MacLeod et al. these proceedings. 
This is encouraging, especially since there are four 800k 
SNP in high linkage disequilibrium (r2~0.75) with the 
DGAT1 causative mutation, but these SNP received a lower 
posterior probability in the BayesRC analysis, indicating 
that causative mutations can be identified even when there 
are other variants in relatively high linkage disequilibrium. 
 

Conclusion 
Genomic prediction with whole genome sequence 

data is now possible for cattle.  The 1000 Bull Genomes 
Project provides a database of 31 million variant genotypes 
in key ancestor bulls that can be imputed into reference 

populations genotyped with SNP arrays, and genomic 
prediction methods that can deal with such large data sets 
are under development.  One such method, BayesRC, takes 
advantage of biological information in genomic prediction 
from sequence data.  In a dairy data set, predictions using 
BayesR or BayesRC and imputed sequence data from the 
1000 bull genomes were 2% more accurate than from an 
800k data set, and we could demonstrate BayesRC was able 
to identify causal mutations in some cases.  Further 
improvements in accuracy of genomic prediction from 
sequence data, and particularly persistence of accuracy of 
these predictions across generations, will come from more 
accurate imputation of sequence variant genotypes, larger 
data sets, and improved biological information on sites and 
gene sets that are more likely to harbor mutations affecting 
quantitative traits.      

   
Literature Cited 

 
Braunschweig, M.H., Leeb, T. (2006).  J. Dairy Sci. 

89:4414-9 
Browning, B.L., Browning, S.R.  (2013). Genetics 194:459-

71 
Clark, S.A., Hickey, J.M., van der Werf, J.H. (2011).  

Genet. Sel. Evol. 17:43:18 
Daetwyler, H.D., Capitan, A., Pausch, H. et al. (2014).  Nat. 

Gen. Accepted.   
Daetwyler, H.D., Swan, A.A., van der Werf, J.H.et al. 

(2012).  Genet.  Sel. Evol. 44:33 
Druet, T., Macleod, I.M., Hayes, B.J. (2014).  Heredity 

112:39-47 
Erbe, M. Hayes, B.J., Matukumalli, L.K., et al. (2012). J. 

Dairy Sci. 95: 4114-29 
Garrick, D.J., Taylor, J.F., Fernando, R.L. (2009).  Genet 

Sel Evol. 31:41:55 
Grisart, B., Coppieters, W., Farnir, F.  (2002). Genome Res. 

12:222-31 
Habier, D. et al. (2010). Genet. Sel. Evol.  42:5 
Habier, D., Fernando R,L,, Kizilkaya, K,,,  et al. (2011) 

BMC Bioinformatics 12:186 
Habier, D., Fernando, R.L., Dekkers, J.C.  (2007).  Genetics 

177:2389-97 
Habier, D., Tetens, J., Seefried, F.R. (2010).  Genet. Sel. 

Evol. 19:42:5 
Haile-Mariam, M., Nieuwhof, G.J., Beard, K.T. et al. 

(2013).  J. Anim. Breed. Genet. 130:20-31.   
Harhay, G.P., Smith, T.P., Alexander, L.J. et al. (2010).  

11:R102 
Hawken, R.J.  (2014).  Proc. Plant Anim. Genome XXII. 

W520 
Huang, X., Wei, X., Sang, T. et al. (2010). Nat Genet. 

42:961-7 
Jensen, J., Su, G., Madsen, P. (2012). BMC Genet. 13: 44  
Kindt, A.S., Navarro, P., Semple, C.A., et al. (2013).  BMC 

Genomics 14:10 
Koufariotis, R. Chen, Y.P., Bolormaa, S., et al. (2014).  

BMC Genomics.  Submitted.   
Macleod, I.M., Hayes, B.J., Goddard, M.E.  (2014). 

Genetics 
Maurano, M.T., Humbert, R., Rynes, E. (2012).  Science 

337:1190-1195 



Meuwissen, T.H., Hayes, B.J., Goddard, M.E. (2001).  
Genetics 157:1819-29 

Raven, L., Cocks, B.J., Hayes, B.J. (2014).  BMC 
Genomics 15:62.  

Saatchi, M., Schnabel, R.D., Rolf, M.M. et al. (2012). 
Genet. Sel. Evol. 44:38 

Shepherd, R.K., Meuwissen, T.H., Woolliams, J.A. (2010).  
BMC Bioinformatics. 11:529 

Van Binsbergen, R., Bink, M. C. A. M., Calus, M. P. L. et 
al. (2014). Genet Sel Evol. Accepted.    

Vander Jagt, C.J. (2012). PhD Thesis. University of 
Melbourne, Australia. 

Verbyla, K.L., Hayes, B.J., Bowman, P.J,, et al. (2009).  
Genet. Res. 91: 307-11 

Wellmann, R., Preuss, S., Tholen, E. et al.  (2013).  Genet. 
Sel. Evol. 45:28 

Wiggans, G.R., Vanraden, P.M., Cooper TA.  (2011).  J. 
Dairy Sci. 94:3202-11  


