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ABSTRACT: This paper discusses how Bayesian
multiple-regression methods that are used for whole-
genome prediction can be adapted for genome-wide as-
sociation studies (GWAS). It is argued here that control-
ling the posterior type I error rate (PER) is more suit-
able than controlling the genomewise error rate (GER)
for controlling false positives in GWAS. It is shown here
that under ideal conditions, PER can be controlled by
using Bayesian posterior probabilities that are easy to
obtain. Computer simulation was used to examine the
properties of this Bayesian approach when the ideal con-
ditions were not met. Results indicate that useful infer-
ences can be made using Bayesian posterior probabili-
ties.
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Introduction

Genomic prediction requires obtaining genotypes
and phenotypes on several thousand animals in a train-
ing population to estimate effects of the SNP geno-
types on the traits of interest. The estimated SNP ef-
fects are then used to predict the breeding values of se-
lection candidates that may not have any phenotypes
recorded but have been genotyped (Meuwissen et al.
2001). The genotype and phenotype data obtained for
whole-genome prediction can also be used for genome-
wide association studies (GWAS) to locate causal vari-
ants (QTL) for traits of economic importance.

Many GWAS for quantitative traits are based on
testing one SNP at a time using simple regression models
or using a mixed models with a fixed substitution effect
of the SNP genotype included, along with a polygenic
effect correlated according to pedigree relationships to
capture the effects of all other genes. Such GWAS have
been successful in detecting many associations, but the
established associations typically explain only a small
fraction of the genetic variability of quantitative traits

(Visscher et al. 2010). On the other hand, in analyses
that use whole-genome selection models that simultane-
ously fit all SNPs as random effects, the SNPs jointly
explain a large proportion of the genetic variance (On-
teru et al. 2010; Hayes et al. 2010; Fan et al. 2011).
In these analyses, however, any given SNP may have
only a weak association even with a closely linked QTL.
The reason for this is that in a high-density SNP panel
many SNP genotypes within a narrow genomic region
are expected to be highly correlated with each other and
with any QTL that are close to them. So, any one SNP
may contribute only a little more to explain the vari-
ability of the QTL in addition to the other SNPs in the
neighborhood. On the other hand, even if each SNP in
a neighborhood is only weakly associated with a QTL,
the SNPs in the neighborhood may jointly explain much
more of the variability of a QTL than any SNP by it-
self. Therefore in multiple-regression models, SNPs in a
genomic window should be used jointly to locate QTL
(Onteru et al. 2010; Sahana et al. 2010; Hayes et al.
2010; Fan et al. 2011).

Inferences on genomic windows by frequentist
methods, however, are computationally very challenging
because they require repeated analyses of the data with
bootstrap or permuted samples to obtain significance
levels for tests (Onteru et al. 2010; Hayes et al. 2010;
Fan et al. 2011). It can be shown that Bayesian poste-
rior probabilities obtained from a single MCMC analy-
sis can be used to make inferences on genomic windows.
This approach to inference is related to the frequentist
approach of controlling the conditional probability of a
false positive (type I error) given a positive (significant)
result, which is referred to as the the posterior type I
error rate (PER) in the human linkage analysis litera-
ture (Morton 1955; Ott 1991; Risch 1991; Elston 1997).
When multiple tests are involved, it has been shown that
controlling the PER for a randomly chosen test is equiv-
alent to controlling proportion of false positives (PFP)
from the collection of all tests (Fernando et al. 2004). In
contrast to controlling the genomewise error rate (GER),
controlling PER or PFP has the property that the power



of detecting associations is not inversely related to the
number of tests (Fernando et al. 2004; Stephens and
Balding 2009). This property is especially attractive in
GWAS, where the number of tests can be very large.

A requirement for controlling PER is knowledge
of the distribution of the test statistic under the null
hypothesis of no association, which is also required to
control the usual type I error rate. In addition to this
requirement, controlling PER requires knowing the pro-
portion 7 of SNPs for which the null hypothesis is true
and the average power of the test, which is the average
probability of rejecting the null hypothesis when it is
not true. These quantities are almost never known in a
GWAS of a quantitative trait, and thus PER cannot be
controlled in a manner that the usual type I error rate
can be controlled (Elston 1997).

In contrast to frequentist methods, when the
Bayesian multiple-regression methods that are used for
whole-genome prediction (Meuwissen et al. 2001) are
applied to GWAS, posterior probabilities that are sim-
ilar to PER can be obtained even without the require-
ment of knowing the null distribution of any test statis-
tic. Further, in Bayesian analyses, 7 and the magnitude
of the partial regression coefficients of markers, which
determine average power, can be formally treated as un-
knowns such that their uncertainty is incorporated in
the inference.

A posterior probability from a Bayesian analysis,
however, is not a conditional probability in the frequen-
tist sense. It is an expression of belief of some event
of interest conditional on the observed data. In the
multiple-regression models used here for GWAS, when
the posteriors for 7 and the partial regression coefficients
of markers are close to their true values, the posterior
probability of an association is expected to be closely re-
lated to the frequentist conditional probability of a true
association given the data. A computer simulation is
used to examine this relationship between the posteror
probability of association and the true frequency of as-
sociation.

Methods

Controlling False Positives. The longstanding
practice of using a lod score of three for declaring link-
age between a monogenic disease locus and a random
marker is based on control of the posterior type I error
rate (PER) to about 0.05 (Elston 1997). In the multiple-
test setting, it has been shown that the PER for a ran-
domly chosen test from a family of k tests is equal to the
level of PFP for the entire family of k tests (Fernando
et al. 2004). So, it is clear that if PER for each test is

controlled to a level v, PEP for the entire set of tests will
be also be controlled at . In a Bayesian analysis this
can be achieved by declaring an association only when
the posterior probability of association is greater than
(1 —+). In any such declaration, the posterior probabil-
ity of no association will be < -, resulting in « being the
upper bound for PFP.

Control of PFP is closely related to the control of
the false discovery rate (FDR) (Benjamini and Hochberg
1995) and its close relative the positive false discovery
rate (pFDR) (Storey 2002). Let V denote the number
of false positive results and R the number of positives
from a multiple-test experiment. Then, PFP is defined
as

PFP = —%
FDR is defined as
\%
FDR = E(ElR > 0)Pr(R > 0),
and pFDR as
\%4
pFDR = E(E\R > 0)

Our justification for use of PFP to control false posi-
tives is that if PFP is controlled at say ~ for each of n
independent experiments, the proportion of false posi-
tives among significant results across all n experiments
converges to 7 as the number of experiments increases
(Fernando et al. 2004). In general, this property does
not hold for FDR or pFDR (Fernando et al. 2004).

The most widely used approach to control false
positives is controlling the genomewise type I error rate
(GER). If only one marker is tested, controlling GER
to 0.05 will result in a much larger value for PER, i.e.,
among significant results a large proportion would be
false positives (Fernando et al. 2004). Thus, to control
PER to 0.05, a more stringent significance threshold has
to be used. Now, suppose several markers are tested
with the same stringent significance threshold each with
the same prior probability of association and power of
test. Then for each test, PER would be 0.05, even when
the tests are not independent. So, it can be reasoned
that if the proportion of errors among significant results
from each test is 0.05, then among all the significant re-
sults the proportion of errors will also be 0.05. Thus,
provided the prior probability of association and power
are constant, the same significance threshold can be used
to control the proportion of errors among significant re-
sults regardless of the number of tests (Fernando et al.
2004). In other words, when PER is used to control
false positives there is no multiple-test penalty (Stephens
and Balding 2009). This is not true for GER, which for
a given significance threshold increases with the num-
ber of tests. So when the number of tests increases, to



maintain the same GER even more stringent significance
thresholds need to be employed, incurring the multiple-
test penalty of lower power to detect associations.

To control PER it is required to know the value
of m, which is the probability that the null hypothesis is
true for a test, and the average power of the test. On
the other hand, in Bayesian analyses, quantities such as
7w can be treated as unknowns and an upper bound for
PER can be obtained from Bayesian posterior probabil-
ities. For example, the PER for the test of association
for a genomic window, W, is obtained as 1 - WPPA,
where WPPA is estimated by counting the number of
MCMC samples in which o; is non-zero for any SNP j
in W¢, the central window of W (Figure 1). A Bayesian
posterior probability, however, has a different meaning
from a frequentist conditional probability. So, computer
simulation was used to examine the relationship between
these two probabilities.

Bayesian Regression. Following Meuwissen et al.
(2001), consider the mixed linear model

K
y=XB+> zja;+e, (1)

Jj=1

where y is the vector of trait phenotypes, X is an inci-
dence matrix relating the vector of non-genetic, fixed ef-
fects B to y, z; is a vector of genotype covariates (coded
as 0, 1 or 2) for SNP j, a; is the random, partial regres-
sion coefficient for SNP j, and e is a vector of residuals.
In this model, the fixed effects are assumed to have a
flat prior, and the «; are a priori assumed independently
distributed as

9 0 with probability 7

ajlm o0, = {~ N(0,02 ) with probability (1 — )

) 04] )
(2)
where the 0’3], are a priori assumed independently and
identically distributed (iid) scaled inverse chi-square
variables with scale S2 and degrees of freedom v,. The
residuals are assumed iid normal with null mean and
variance o2, with a scaled inverse chi-square prior for
o2 with scale S? and degrees of freedom v,. Inferences
on the unknowns in the model are made from their
marginal posterior distributions, using Markov Chain
Monte-Carlo (MCMC) methods (Meuwissen et al. 2001;

Habier et al. 2010).

Although this model was first proposed for whole-
genome prediction (Meuwissen et al. 2001), it can also
be used to locate genomic regions that contain QTL (Yi
et al. 2003; Sun et al. 2011; Fan et al. 2011). Consider
a model where 7 is close to one, i.e., a model where most
regions of the genome do not have markers that are asso-
ciated with the trait. This is the model called BayesB by

(Meuwissen et al. 2001). Given such a model, the poste-
rior probability that «; is non-zero for at least one SNP
j in a window or region can be used to make inferences
on the presence of QTL in that region. We will refer to
this probability as the window posterior probability of
association (WPPA). The underlying assumption here
is that if a genomic window contains a QTL, one or
more SNPs in that window will have non-zero a;. Thus,
WPPA, which is estimated by counting the number of
MCMC samples in which o; is non-zero for at least one
SNP j in the window, can be used as a proxy for the
posterior probability that the genomic window contains
a QTL and is thus “associated with the trait”.

It is possible, however, that SNPs in a window
that does not contain any QTL are in association with a
QTL outside the window, which is what has been called
signal dependence (Chen and Storey 2006). Fortunately,
for most populations, the linkage signal from LD ex-
tends over only short distances compared to that from
cosegregation, and as described below, when all SNPs
are fitted simultaneously, signal dependence is further
reduced. Let W denote the window for which WPPA
is estimated. Let W and Wgr be windows of length k
cM to the left and right of W, as illustrated in Figure 1.
A high WPPA for W¢ is taken as evidence of a QTL in
the “composite” window W comprised of W, W, and
Wr. Because WPPA for W is a partial association con-
ditional on all other SNPs in the model, including those
in the flanking windows Wy and Wpg, the influence of
QTL from outside the composite window on the WPPA
signal for W¢ will be inversely related to the length k
of the flanking windows. In other words, as the num-
ber of markers between a QTL and W¢ increases, the
influence of the QTL on the WPPA signal for W¢ is ex-
pected to decrease. The computer simulation described
next will serve to examine this expectation in addition to
the relationship between WPPA and the true frequency
of association

Computer Simulation. The simulation described
here was used to test if WPPA can be used to con-
trol false positives in GWAS, where the tests are depen-
dent. Actual SNP genotypes of purebred Angus bulls
were used to simulate QTL and phenotypes as described
in Kizilkaya et al. (2010). Exactly 100 data sets with
1,000 observations and another 100 with 3,570 obser-
vations were simulated, using genotypes at 52,910 SNP
loci on 3,570 purebred Angus bulls. The 1,000 bulls were
randomly sampled without replacement for inclusion in
the data sets with 1,000 observations, whereas all bulls
were used in the data sets with 3,570 observations.

In each of the 200 data sets, SNP effects of mark-
ers were sampled according to the prior of the BayesC
model of Habier et al. (2011) with 7 = 0.995, where a



proportion 7 of the loci have null effects and the remain-
ing loci have normally distributed effects with null mean
and common variance o2 of SNP effects. The value of
the common variance of SNP effects was chosen as in
(Kizilkaya et al. 2010) such that the additive genetic
variance for the trait was 0.9. The average number of
QTL in the data sets was about 260. The residual vari-
ance for the trait was set at 0.1 to give a heritability of
0.9, reflecting the heritability of progeny means. Both
data were analyzed without including the SNPs that rep-
resent the QTL in the marker panel. Posterior inferences
were based on 10,000 MCMC samples after a burn-in of
1,000 samples.

In all analyses, the genome was divided into 2,676
one cM intervals according to the bovine map. The
WPPA was computed for each such window, W¢, as
explained previously. When the QTL are not included
in the marker panel, it is not straightforward to deter-
mine if We is or is not associated with the trait. In
this study, W was defined to have an association if it,
or windows Wy, or Wg, flanking W, contained one or
more QTL. In order to study the relationship between
WPPA and the true frequency of association, each ge-
nomic window, W, was classified into one of 10 WPPA
classes of length 0.1 between 0 and 1. For example, all
windows with WPPA between 0 and 0.1 were be clas-
sified into the first class, and those with WPA between
0.1 and 0.2 to the second class. The true frequency of
association for a WPPA class j was estimated as the
frequency of the total number of composite windows be-
longing to class j that contained at least 1 QTL relative
to the total number of windows belonging to that class.

Recall that the prior of BayesC with 7 = 0.995
was used in the simulation of SNP effects. Thus, WPPA
from a BayesC analysis with 7 = 0.995 is expected to
agree well with the actual frequency of the QTL. BayesC
and BayesB with 7 = 0.995, and BayesCm, where 7 is
treated as an unknown (Habier et al. 2011), were used
to analyze the data sets with 1,000 observations without
including the QTL in the marker panel.

Results and Discussion

Figure 2 presents results from three analyses of
the 100 data sets with 1,000 observations, and Figure 3
gives results for the 100 data sets with 3,570 observa-
tions. In these analyses, which did not have the QTL
included in the marker panels, in genomic windows of
1cM (k = 0), WPPA for W¢ substantially overestimated
the frequency of association when WPPA was greater
than about 0.15. For example, in plot B of Figure 2,
which shows the relationship between WPPA and the
frequency of association for BayesC with = = 0.995,

in genomic windows of 1cM with WPPA between 0.9
and 1.0, the frequency of association was about 0.72
and in genomic windows of 1cM with WPPA between
0.8 and 0.9, the frequency of association was only about
0.5. When the QTL were included in the analysis, the
comparable QTL frequencies were 0.97 and 0.81 (results
not shown). Thus, when the QTL were not in the panel,
WPPA overestimated the frequency of association for
We. Following are two possible reasons for this. The
first is that the prior used for marker effects does not
agree with the actual distribution of effects. When the
QTL are not included in the marker panel, only markers
that are in complete LD with the QTL will have effects
that are distributed as the QTL. In Angus, the average
LD between adjacent markers for the 50k SNP panel is
about 0.2. Thus, the distribution of marker effects may
be quite different from that of the QTL and this may
have an impact on the relationship between WPPA for
a genomic interval and the frequency of association for
that interval even when the distribution used to generate
the QTL effects is used as the prior for marker effects
as in the BayesC analysis with @ = 0.995. The sec-
ond reason is violation of the assumption that WPPA is
equivalent to the posterior probability that We contains
a QTL (WPPQ), which is our definition of a true asso-
ciation when k = 0. Recall that WPPA is the posterior
probability that a marker in window W has a non-zero
effect on the trait. When the QTL are included in the
panel, WPPA is also the posterior probability of a QTL
in W because QTL by definition have non-zero effects
on the trait. However, when the QTL are not included
in the panel, WPPA is not equivalent to probability of
a QTL in We. A marker in We may have a non-zero
effect even when We does not contain any QTL due to
it being in LD with a QTL in an adjacent window. This
would cause WPPA to be higher than WPPQ, which is
consistent with our results.

It can be argued that both of the reasons given
above played a role in the observed over estimation
WPPQ by WPPA. Violation of the assumption that
WPPA is equivalent to WPPQ, however, seems to have
played a greater role. The three plots in Figure 2 were
obtained using three different priors. Plot A is from
a BayesB analysis with 7 = 0.995, where a central ¢
distribution with four degrees of freedom was used as
the prior for marker effects. Plot B is from BayesC
with 7 = 0.995, where a normal distribution is used for
marker effects, and plot C is from BayesCr, where 7 is
treated as unknown with a uniform prior between 0 and
1 and a normal prior for marker effects. The fact that
the results from these three analyses were very similar
indicates that with 1,000 observations these differences
in priors had a negligible effect on the relationships be-
tween WPPA and QTL frequencies. Further, if the over-
estimation of WPPQ by WPPA was due to the prior for



marker effects not being appropriate, then better results
would be expected in the data sets with 3,570 observa-
tions. However, this was not the case. Overestimation
was even greater with the bigger data sets (Figure 3). On
the other hand, if the observed overestimation of WPPQ
was due to markers in W¢ being in LD with QTL in ad-
jacent windows, it is possible that with more data associ-
ations with even more distant QTL could further inflate
WPPA. Comparison of true frequencies of association in
plot C of Figure 2 with those in Figure 3 for genomic
windows with WPPA between 0.8 and 0.9 and k£ =0, 1,
and 2 suggests that with the bigger data sets more dis-
tant QTL contributed to the WPPA value calculated for
We. In these analyses that did not include the QTL in
the marker panel, there was good agreement between
WPPA and the true frequency of association (WPPQ)
for the composite window W with k& = 2 when WPPA
was larger than 0.8.
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Figure 1. Hlustration of composite genomic window W
consisting of central window W¢ and flanking windows
Wi, and Wg. To test the null hypothesis of no QTL in
W, window PPA (WPPA) is computed by counting the
number of MCMC samples in which «; is non-zero for
at least one SNP in the central window We.




Figure 2. Relationship between window posterior prob-
ability of association (WPPA) and the actual frequency
of association (WPPQ). WPPA was computed for each
1cM window (W¢) of the genome and grouped into 10
WPPA classes (x-axis). For each WPPA class, the ac-
tual frequency of simulated QTL in the composite win-
dow comnsisting of W¢ and the flanking windows of k cM
(k = 0,1, or 2) in length is given in the y-axis as the
frequency of association. Results are for BayesB with
m = 0.995 (plot A), BayesC with 7 = 0.995 (plot B),
and BayesCr (plot C) from from 100 data sets each with
1,000 observations. The QTL were not included in the
marker panel.
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Figure 3. Relationship between window posterior prob-
ability of association (WPPA) and the actual frequency
of association (WPPQ). WPPA was computed for each
1cM window (W¢) of the genome and grouped into 10
WPPA classes (x-axis). For each WPPA class, the ac-
tual frequency of simulated QTL in the composite win-
dow consisting of W¢ and the flanking windows of k ¢cM
(k = 0,1, or 2) in length is given in the y-axis as the
frequency of association. Results are for BayesCm from
100 data sets each with 3,570 observations. The QTL
were not included in the marker panel.
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