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ABSTRACT: Principal component analysis (PCA) is one of 
the most widely used tools to explore variability of high 
dimensional data. PCA is used for population and 
quantitative genetics. Its popularity has recently increased 
due to the huge amount of molecular markers available in 
datasets worldwide. In genetics, a common issue due to 
external constraints is uneven sampling of populations, 
limiting the usefulness of PCA because of well-known 
sample size sensitivity and two-dimensional projection bias. 
Here we evaluated the use of weighted PCA (wPCA) in 
genetic data in order to correct uneven sampling bias. 
Simulations suggest that wPCA improves the two-
dimensional projections of PCA data and, in some cases, 
recovers population relationships patterns, even when 
sample size is as low as n=1. We used this correction in pig 
data from populations with uneven sampling, recovering a 
more realistic structure than inferred with only PCA. 
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Introduction 
The Principal Component Analysis (PCA) is a 

widely used tool for visualization of the structure of a highly 
multidimensional data set. It has applications in many fields, 
including genetics (Novembre and Stephens (2008)). The 
idea behind this technique is to reduce the complexity of the 
data by retaining only the linear combinations of variables 
explaining the maximum variance in the data set. Individual 
data is then projected onto the space of these combinations 
and visualized as a low-dimensional plot. In population 
genetics, PCA is frequently applied to visualize the genetic 
structure of populations, and its popularity has increased in 
the last years because of the high throughput genotyping 
technologies (e.g., SNP arrays), where it is necessary to 
extract the underlying structure of the dataset 
(dimensionality reduction) in a computationally efficient 
manner (Paschou et al., (2007)). 

Despite several advantages of PCA in the 
population genetics field, this technique is very sensitive to 
the choice of the dataset and the distortion of the PCA plots 
due to a biased or unequal sampling is a known problem 
(McVean (2009)). In genetic studies, it is often not possible 
to sample individuals according to some criteria chosen a 
priori. For instance, the choice of sampling could be biased 
by incomplete knowledge of the population structure, 
conservation or there could also be ethical issues. Further, 
many factors, like budget constraints or accessibility of 
geographical regions, availability of samples and technical 
problems in their conservation and sequencing limit 
sampling in the field.  

McVean (2009) suggested to correct for unequal 
sampling by downsampling the different populations, but 
this may lead to a loss in power or in a less accurate picture 
of genetic structure. A natural framework for this is to 
correct for this issue by means of a weighted PCA (wPCA), 
where the variables measured for each sample can be 
assigned a different weight wi (Kriegel et al., (2008)). 
Kriegel et al. proposed this correction for synthetic data to 
evaluate the influence of outliers on PCA but, to our 
knowledge, its properties in genetic data are unknown. Here, 
we evaluated the usefulness of this correction with data from 
SNPs polymorphism under different population 
relationships, and illustrate the method in pig populations 
where differences in sample size could under-over estimate 
population relationships. 

 
Materials and Methods 

Weighted PCA. Given a set of genetic data of n 
sequences/genotypes and s biallelic SNPs for each sequence, 
the first step of the PCA is to compute the covariance: 
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A common assumption is that all individuals 

should be equally important in the PCA (that is, the implicit 
weight of each individual is 1/n). This is usually correct, 
since there is often no prior information about the origin and 
grouping of individuals. However, this is not true for 
samples taken from different breeds or structured natural 
populations living in different habitats or geographical 
locations, since the degree of relationship will differ 
between and within breeds.  

In the wPCA paradigm, each sample’s genotype 
can be assigned a different weight wi; then, the covariance 
can be rewritten naturally as:  
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where the weights are numbers between 0 < 𝒘𝒊  < 1 with 
∑ 𝒘𝒊 = 𝟏𝒊 . This reduces to the usual PCA when 𝑤𝑖 =  1 𝑛� . 
We denote the number of populations by npop and the 
number of sequences in population A by nA. Since the 
weight of population A is the sum of the weights of all the 
sequences belonging to A, a natural weight for each 
sequence of A is: 
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Simulations. To evaluate the usefulness of wPCA 

in genetic data, we simulated six populations considering 
two scenarios where population relationships are mainly 
shaped by the individuals exchange (e.g., migrations or 
introgression). In the first scenario (M1), we considered that 
all populations are equally related in terms of exchange of 
individuals. This scenario may occur in cooperative 
breeding schemes where sires or dams are regularly 
interchanged between herds. In the second scenario (M2), a 
subpopulation structure was considered where some 
populations have high individual exchange rates among 
them but low with the rest. This will typically occur, e.g., 
when one nucleus provides genetic material to other herds 
that are otherwise not connected. 

For each population, five hundred individuals with 
thousand independent SNPs each were simulated by 
coalescence using MLCOASIM.v2 (available at 
http://bioinformatics.cragenomica.es/numgenomics/people/s
ebas/software/software.html). Effective population size 
(Ne=1000) was similar for all populations. Further, each 
population was sampled retaining one hundred individuals 
each for downstream analyses. To simulate unbalanced 
sampling three and one populations for M1 and M2 
respectively, were subject to reduction of sample size ranged 
from n=1 to n=15. Sampling and multivariate analyses were 
performed in R (R Development Core Team (2011)). 

Pig data. Genotype data from Cuban pig 
populations (Burgos-Paz et al., (2013)), is an interesting 
case to validate this methodology. Briefly, these samples 
represent well-structured populations with unequal sample 
sizes 1, 5 and 12 for Central Cuba (CUCE), Eastern Cuba 
(CUEA) and Western Cuba (CUWE), respectively. Previous 
analyses in Burgos-Paz et al. revealed different admixture 
proportions with Iberian, Asian and commercial breeds in 
these Cuban populations, and we suspected that unequal 
sample size, especially of CUCE population, affected the 
two-dimensional PCA projection. 

We evaluated the credibility of PCA projections 
with real data using coalescence simulations. To do this, we 
simulated three populations with 20 individuals each. For 
the demography model, we considered an initial bottleneck 
due to arrival of Iberian pigs to Cuba in the 16th century 
(Crossby (2003)), and a recent introgression (20th century) 
of Commercial breeds, which in turn derived from a strong 
introgression of Asian populations in 18th century to Europe 
(Giuffra et al., (2000)). A generation interval of 3 years was 
assumed. We studied two datasets, one with equal sampling 
size (n=20) and an unbalanced dataset of n = 1, 5, and 12, as 
in the real sampling scheme.  

 
Results and Discussion 

Simulated data. Each model leaves a distinct 
characteristic PCA projection if sample sizes are balanced 
across populations. A large and balanced simulated data 
PCA (Figure 1, left-column) represents the expected ‘true' 
pattern of PCA projection. Middle and right columns show 

the PCA projection with an unbalanced finite dataset using 
the usual (middle) and weighted (right) approach. An 
unweighted PCA result in highly distorted PC projections, in 
agreement with McVean, (2009). The PCA distortion was 
especially noticeable in M1, where individuals from reduced 
populations were located in the middle of the populations 
with larger sample size. In M2, distortion may cause 
misinterpretation of subpopulation structure (i.e blue dot 
individuals). 

 

 
 
Figure 1. PCA and wPCA projections of simulated 
models. Left column shows PCA of all simulated data, 
the middle and the right columns shows PCA and wPCA 
of sampled data, respectively. 
 

Considering the sample size of each population as 
weighted vector, application of wPCA recovered the 
expected population structure observed using balanced data 
(Figure 1, right-column). The proposed correction greatly 
improves the projections even if lower sample size in the 
population is n=1, as in M2. For M1, the minimum sample 
size required to improve the projections was higher (n=7) 
because of the low differentiation among populations. In this 
model, wPCA tends to overcorrect the projection with too 
small sample sizes. In hierarchical population structures 
(M2), wPCA recover the original structure with very low 
sample sizes and over correction is minimal.  

wPCA in Cuban pig data. The previous results 
suggest that wPCA correction improves the PCA projection 
for structured populations, even in sample size n=1. 
Considering this, we used wPCA correction to explore the 
graphical representation of Cuban pig populations (Burgos-
Paz et al., (2013)). Because samples were collected from 
three areas and no phenotypic criterion available, we used 
the size according to geographic origin as weight vector. 
Unweighted PCA projections showed the expected pattern 
where the population with fewest samples (CUCE) is shrunk 
towards the largest populations (Figure 2, left). 



 
 

Figure 2. PCA and wPCA projections for observed data 
of Cuban pig populations. 
 

Using wPCA (Figure 2, right), population with 
sample size n=1 (CUCE) was separated from the population 
with largest sample size (CUWE) and projection agrees with 
differentiation estimated either from FST or admixture 
analyses (Burgos-Paz et al., (2013)). To test whether the 
wPCA represents the most realistic true structure, we 
performed a simulation study with subsequent sample size 
reduction up to one individual in CUCE. The PCA 
projection of simulated data showed a triangle-like 
population arrangement mainly caused by differentiation of 
populations (Figure 3). 

 

 
 
Figure 3. PCA and wPCA projection for the simulated 
model for Cuban pig populations  

 
With unequal sample size and uncorrected PCA, 

we obtained a projection for PCA very similar to the real 
data (Figure 2, left), where the population with the lowest 
sample size (CUCE) clusters with the largest sampled 

population (CUWE). Additionally, similar values of the 
variance explained by the two first PC’s were found. When 
wPCA was used, we recovered instead the expected 
triangle-like relationships as in PCA of complete data. The 
simple correction proposed here leads to a realistic 
interpretation of a likely demography model.  
 

Conclusions 
Application of weighted covariance in the 

estimation of PCA (wPCA) is a simple yet effective strategy 
to correct the effect of uneven sample size in genetic data, 
showing that population structure could be recovered in 
populations with low and unequal sample sizes. The results 
suggested also that, even in the presence of unbalanced 
migration and admixture, the application of weights in PCA 
could capture additional information of dataset, improving 
the two-dimensional projections of data. 
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