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ABSTRACT: Complex traits are presumably affected by 
several genomic regions acting in some concerted manner 
(epistasis), by non-linearity between genome and 
phenotypes stemming from enzyme kinetics, and by 
interactions with environmental forces. Prompted by these 
considerations, non-parametric approaches entered into 
quantitative genetics early in the 21st century, and a decade 
of experience has been accumulated, mostly in animals and 
plants. Some developments are reviewed in this paper, and 
areas for additional investigation are discussed. 
Keywords: complex traits; genome-enabled prediction; 
non-parametric regression 
 

Introduction 
The emergence of a massive number of molecular 

markers has prompted an enormous amount of research 
aimed at exploring genome-wide associations with 
continuous and meristic (typically disease) traits, an 
inferential task, as well as prediction of outcomes. Inference 
is cursed by dimensionality (the number of markers, p, 
exceeds the number of observations in the sample, n). 
Following Meuwissen et al. (2001), genome-enabled 
prediction has become important in animal and plant 
breeding, and it may play a role in personalized medicine, 
e.g., de los Campos et al. (2010a) and Vazquez et al. 
(2012). A relevant area of research is that of finding a 
“prediction machine” that is flexible and robust (stable) 
with respect to type of input data, gene action and 
environmental circumstances, and that is amenable to 
routine computing as required in applied genetics.  

Much effort has been done in developing Bayesian 
linear regression models differing in their prior distribution, 
with the objective of capturing varied forms of “genetic 
architecture”. Gianola (2013) argued that this is possibly 
futile for complex traits because at most n parameters can 
be identified in a likelihood, so that p-n complementary 
“parameters” are redundant (although their posterior 
distributions exist if priors are proper). The process of 
Bayesian learning is imperfect here because the prior IS 
influential with mathematical certainty. In a view of this, 
Kempthorne (1972) stated: “reporting only of Bayesian 
estimates, each based on the prior of the person who 
obtained them, will butcher the processes of science”. 
Apart from this serious matter, a linear regression model 
should not be taken more seriously than as a local 
approximation. As a metaphor, it may be useful to regard 
the earth as flat within the range of our visual field, and 
plan accordingly; however, this perception would be 
mechanistically inaccurate. In that vein, quantitative 
genetics is mainly based on the assumption of a linear 
function of allelic effects and, when the number of loci goes 
to infinity (plus linkage equilibrium, LE, assumptions) the 
infinitesimal model results. With a finite number of loci 

(presumably “causal variants”), substitution effects can be 
viewed as partial derivatives on allelic content. This linear 
approximation accounts for most genetic variance even in 
well-characterized epistatic systems (Hill et al., 2008). 
While this finding reassures us that the additive model 
offers a good first-order local approximation, it does set an 
upper limit to the potential of our theory from a discovery 
perspective: almost everything turns out to be additive 
when, in fact, it is not. As Rousseau suggested in “La 
Nouvelle Heloise”, obviously in another context, the 
additive model seems to deny what it is, explaining what it 
is not. 

Based on the above, it is doubtful whether it may 
ever be possible to understand complex traits using multiple 
linear regressions. We have argued (Gianola et al., 2006; 
Gianola and van Kaam, 2008) that machine learning 
methods have been used successfully in fields where either 
complex problems (e.g., image reconstruction) or a lack of 
good theory (e.g., economics) are encountered. Based on 
our experience with reproducing kernel Hilbert spaces 
regression or RKHS (Gonzalez-Recio et al., 2008, 2009; de 
los Campos et al., 2009, 2010; Perez-Rodriguez et al., 
2012) and neural networks (Gianola et al., 2011; Okut et al., 
2011, 2013; Gonzalez-Camacho et al., 2012; Tusell et al., 
2013) we have found that the latter are unstable in 
performance as their propensity to over-fitting is hard to 
temper by regularization, unless variable selection is 
conducted concomitantly. On the other hand, kernel-based 
methods have been used extensively for regression and 
classification (Wahba, 1990; Vapnik, 1998; Shawe-Taylor 
and Cristianini, 2004), because of their capacity for 
delivering accurate predictions if properly tuned. Based on 
our empirical experience with animal and plant data sets, it 
appears that RKHS is one of the best prediction machines 
for genome-based prediction. 

In this paper, we review essentials of the RKHS 
approach and recent developments, discuss some of the 
evidence and suggest areas where additional research may 
be fruitful. 

RKHS in a Nutshell 
 General. Most quantitative genetic methodology 
assumes (for a covariate-homogeneous population) that the 
phenotype is the result of at most three “independent” 
factors: genotype (G), environment (E) and genotype-
environment interaction (GE). If G and E are associated, no 
orthogonal partition of variance is attainable; the same 
happens with lack of LE: the attribution of variance to a 
given locus is ambiguous (e.g., Gianola et al., 2013). 
Ignoring GE, one writes 𝒚 = 𝒈 + 𝒆,  in an obvious notation. 
Since 𝒈 is not observable, proxy variables or instruments 
are used, such as markers x and we replace 𝒈  by some 
function of markers f(x). Then, the model residual changes 



to ε= 𝒈 − 𝑓(𝒙) + 𝒆, where 𝒈 − 𝑓(𝒙) is a misspecification 
error, expected to behave non-randomly, as opposed to e.  
Breiman (2001) emphasized that it is crucial to ensure that ε 
behaves randomly and has suggested “debiasing” 
techniques that animal and plant breeders have ignored in 
their obsession with “bigger is better”. The standard 
representation of 𝑓(𝒙)  is often a linear regression on 
markers or a linear regression on additive relationships (de 
los Campos et al., 2009; Gianola et al., 2011). 
 The basic idea underpinning RKHS (Kimeldorf 
and Wahba, 1971) is that, given x, the best (in some 
precisely defined sense) approximation to g can be found 
by solving the random effects model 𝒚 = 𝑲(𝒙, 𝒉)𝜶 + 𝝐 , 
where  𝑲(𝒙, 𝒉) is an n×n positive semi-definite symmetric 
matrix and 𝒉  is a vector of one or more “bandwidth” 
parameters; 𝜶~(𝟎,𝑲−𝟏𝜎𝛼2)  is a vector of regression 
coefficients (we will often ignore h in subsequent notation, 
but it “is there”) with 𝜎𝛼2  being a variance parameter; 
𝝐~(𝟎, 𝑹𝜎𝝐2) , where 𝜎𝝐2 is the residual variance and 𝑹  is 
some matrix (typically an identity matrix). It is crucial to 
recognize some points: 1) the problem reduces to finding n 
regression coefficients instead of p, as in the family of 
linear regressions known as the “Bayesian alphabet”. 2) 
There is a “primal” and a “dual” representation of the 
problem. For example (e.g., de los Campos et al., 2009), it 
can be shown that GBLUP and “ridge regression-BLUP” 
are primal and dual representations of a problem where the 
kernel is proportional to XX’, where X is an n×p marker 
matrix. Likewise, if a numerator relationship matrix A is 
adopted as kernel, one ends up with representations of 
BLUP involving either the mixed model equations of 
Henderson, or the “strong arm” approach involving the 
inverse of the phenotypic covariance matrix. This is a 
consequence of the fact that the primal and dual 
representations induce the same marginal and conditional 
distributions. That is why one can easily go from GBLUP 
to BLUP of marker effects, and vice-versa. This result, 
shown by Henderson (1977) was rediscovered by Goddard 
(2008) and by Janss et al. (2012); sometimes it is useful to 
revisit “old”. 3) The RKHS paradigm does not guide on 
how 𝑲 is to be chosen, a crucial issue in arriving at good 
predictions.  

Kernel forms. The kernel creates a similarity in 
features among individuals, even if genetically unrelated. 
For example, if additive relationships (ignoring inbreeding, 
for simplicity) are inputs, a valid kernel is A=�𝑎𝑖𝑗�  and 

another kernel could be K= �exp (−ℎ
𝑎𝑖𝑗2

max�𝑎𝑖𝑗2 �
)�  where 

max (.) is the maximum 𝑎𝑖𝑗2   in the data set. The latter 
kernel produces a non-linear transformation of 
relationships; this may (may not) deliver a better predictive 
performance, and whether or not this conveys meaning with 
respect to some theory is immaterial from a predictive 
perspective. Valente et al. (2014, this volume) argue that 
causality (inference) and predictive tasks are different 
matters. It is well known (Takezawa, 2005) that a “causal 
model” may provide bad predictions if too richly 
parameterized, because of over-fitting propensity. The issue 
here is to exploit complexity, as opposed to understanding 
it, which might be a formidable task, e.g., gene × gene × 

gene × gene × gene interactions (the Krebbs cycle includes 
12 different enzymes, and recall that “one gene-one 
enzyme”). 
 The most widely used kernel is the Gaussian. 
Suppose a DNA sequence is divided into 3 sections, e.g., 
exonic, intronic and inter-genic, such that an individual has 
string (𝒙𝐸′, 𝒙𝐼′, 𝒙𝐼𝐺′)′ . A measure of similarity based on 
squared Euclidean distance between sequences i and j could 
take the form 𝑘𝑖𝑗 = �𝑒𝑥𝑝 �− �

(𝒙𝐸,𝑖−𝒙𝐸,𝑗)′(𝒙𝐸,𝑖−𝒙𝐸,𝑗)

ℎ𝐸
�� ×

𝑒𝑥𝑝 �− �
(𝒙𝐼,𝑖−𝒙𝐼,𝑗)′(𝒙𝐼,𝑖−𝒙𝐼,𝑗)

ℎ𝐼
�� 𝑒𝑥𝑝 �− �

(𝒙𝐼𝐺,𝑖−𝒙𝐼,𝑗)′(𝒙𝐼𝐺,𝑖−𝒙𝐼,𝑗)

ℎ𝐼𝐺
���.  

An alternative is the t-kernel presented by Tusell et al. 
(2014). Ignoring the distinction between regions, this kernel 
for a string with p markers is 

𝑘𝑖𝑗 = �1 +
(𝒙𝑖−𝒙𝑗)′∑(𝒙𝑖−𝒙𝑗)

𝑝𝜗
�
−(𝜗+1)

2 where 𝜗  (the degrees of 
freedom) enters as a bandwidth parameter and ∑ is a 
positive-definite matrix of weights. Mathematicians have 
developed methods for estimating the kernel, e.g., based on 
the Matérn covariance function. The Gaussian kernel is 
good enough most often (Ober et al., 2010). When inputs 
are discrete (e.g., strings of markers), theory rules out 
continuous kernels. Morota et al. (2013) evaluated diffusion 
kernels for discrete inputs with animal and plant data, and 
compared these with the Gaussian. Differences in predictive 
ability were minimal; this is fortunate because computing 
the diffusion kernel is time consuming. 

Genomic data are heterogeneous and annotation 
may guide kernel construction. Morota et al. (2014a) used 
SNP annotation (e.g., SNPs in coding regions or in introns 
or in inter-genic regions) in a predictive analysis of broiler 
traits. The different types of genomic information affected 
predictive performance, but whole-genome prediction 
(ignoring annotation) was good enough for practical 
purposes. This may not be a universal finding. 

The importance of choosing a good kernel (akin to 
selecting a good model) is illustrated in a study by 
Konstantinov and Hayes (2010) with dairy cattle. They 
compared two RKHS models with GBLUP; the second 
RKHS implementation was uniformly better than GBLUP, 
but the first did not deliver a good predictive performance. 

Kernels encoding non-additivity. Using dairy 
cattle data, Morota et al. (2014b) attempted to capture 
dominance by fitting additive and dominance Gaussian (or 
parametric) kernels together. For additive kernels (A), 
coding was 0, 1 and 2 for aa, Aa and AA, respectively. 
Coding genotypes as -0.5, 0.5 and -0.5, respectively, led to 
a dominance (D) kernel. The parametric kernels were the 
standard genomic relationship matrix GA and its 
dominance counterpart GD derived as in Su et al. (2012). A 
third kernel (parametric or Gaussian), aimed at capturing 
additive by dominance epistasis, was constructed by taking 
Hadamard products of matrices, e.g., GKA#GKD for the 
Gaussian kernels, following Henderson (1985). In the 
parametric case this assumes no linkage and linkage LE. 
The parametric version of the additive by dominance 
epistasis kernel is GA#GD. Morota et al. (2014b) observed 
a dominance contribution to variance when estimated 
breeding value was the target trait, which is counter-
intuitive. This perplexing result was investigated by 



simulation where average adjacent linkage disequilibrium 
(LD) was 0.18 (r2 metric). Genotypes under LE were 
created for n = 4,482, while varying p from 150 to 40,000. 
The off-diagonals of GD became more strongly correlated 
with those of GA when a larger number of SNPs was used 
for constructing the kernels. This highlights that a partition 
of marked variance into additive and dominance 
components is difficult to attain under LD, producing 
misleading results. Correlations between off-diagonals of 
the additive and dominance relationship matrices were 
small with LE. Perhaps the variance estimates reported by 
Su et al. (2012) and Morota et al. (2014b) are affected by 
lack of orthogonality between kernels. As observed in these 
studies, a sizable gain cannot be achieved with prediction 
models aiming at exploiting non-additive genetic variation 
when naively structured kernels are used. Genomic 
relationship kernels (standard or Gaussian) that are 
”orthogonal” to each other may enhance predictive ability 
but it is unclear how such kernels are to be constructed. 
Unfortunately, stylized models of quantitative genetics 
break down under LD (Gallais, 1974; Weir and Cockerham, 
1976).  For the time being, neither the parametric or non-
parametric approaches explored so far can go much beyond 
exploiting additivity, so Hill et al. (2008) hold again. 

Multi-kernel models. Perhaps the more robust 
approach to building a RKHS machine is a multi-kernel 
specification. There is little theory on this approach, 
seemingly recent in machine learning (Bach et al., 2004; 
Gönen and Alpaydin, 2011). Gianola and van Kaam (2008) 
described an implicit multi-kernel using both pedigree and 
markers, and de los Campos et al. (2010b) formalized the 
approach by fitting several Gaussian kernels differing in 
bandwidth parameter. Here, a “global” kernel creates strong 
commonality among all individuals, whereas a “local” 
kernel allow information borrowing only from individuals 
that are very similar, e.g., in molecular profiles. The idea is 
that some kernel captures a part of a pattern that is not 
detected by other kernels. An example of a multi-kernel 
model is given by 𝒚 = 𝑨𝒈 +  𝑲(𝒙, 𝒉)𝜶 + 𝝐 , 
where 𝒈~𝑵(𝟎, 𝑨−𝟏𝜎𝑎2) , 𝜶~𝑵(𝟎,𝑲−𝟏𝜎𝛼2)  and 
𝝐~(𝟎, 𝑹𝜎𝝐2) are mutually independent. Note that 𝑨𝒈 = 𝒖𝑝  
has the same distribution as the infinitesimal breeding 
value, as captured by a pedigree. If 𝑲(𝒙, 𝒉) = 𝑮  is a 
genomic relationship matrix constructed using additive 
codes for markers 𝑲(𝒙, 𝒉)𝜶 = 𝒖𝒎  is interpretable as a 
molecularly marked breeding value. Sometimes, concern is 
expressed about redundancy between 𝑨 and 𝑮. Apart from 
the fact that such view is debatable, why would one refuse 
using the two kernels together if this leads to a better 
predictive performance? If the objective is to obtain more 
accurate predictions, stricture from theory may not be 
useful. Examples of how combined use of 𝑨  and 𝑮 
enhances predictive ability are in Erbe et al. (2010) and 
Rodriguez-Ramilo et al. (2014). The latter authors employ 
an approach similar to the one in de los Campos et al. 
(2010), but differs in that, instead of fitting 2 variance 
components (one per kernel), a single variance plus a 
parameter λ that “averages” 𝑨 and 𝑮 are used. The weight 
placed on marker versus pedigree-based information was 
inferred from a Bayesian MCMC model, and their method 

was assessed with a many SNPs, a large sample and 5 dairy 
traits. Results indicated that when a larger weight was given 
to 𝑨 the predictive correlation was lower than when more 
weight was placed on G. Importantly, the posterior mean of 
λ was always near the maximum of 1 (all weight on 𝑮). 

Consider the following multi-kernel representation 
with c+2 kernels: 𝒚 = 𝑨𝒈 +  𝑮𝜶𝑔 + ∑𝒊=𝟏

𝒄 𝑲𝒊(𝒙, 𝒉𝒊)𝜶𝑖 + 𝜺.   
Kernel 𝑨 captures infinitesimal effects; 𝑮 accounts 

for additive effects of markers, and the c kernels 𝑲𝒊 could 
be Gaussian kernels with varying bandwidth parameters. 
Even if inputs are just additive marker codes, the Gaussian 
kernels make non-linear transformations of such inputs, 
hopefully capturing epistasis that might be relevant to the 
prediction problem. It may seem mystifying that a kernel on 
additive inputs encodes epistasis. An explanation can be 
motivated by considering a two-locus linear model with 
interaction, as follows: 𝑦 = 𝑥1𝛽1 + 𝑥2𝛽2 + 𝑥1𝑥2𝛽12 + 𝑒, 
where the x’s denote the number of copies of a certain allele 
at the appropriate locus. There is epistasis here because the 
effect of an allelic substitution at the first locus depends on 
the number of copies of alleles at the second locus (and 
vice-versa), that is,  𝛿𝑦

𝛿𝑥1
= 𝛽1 + 𝑥2𝛽12. If a Gaussian kernel 

is employed, the model for an individual possessing marker 
string x becomes 𝑦(𝒙) = ∑𝑖=1

𝑛 𝑒𝑥𝑝 �(𝒙−𝒙𝒊)′(𝒙−𝒙𝒊)
ℎ

� + 𝜖,  and 
an allelic substitution at marker j in the string has impact 
𝛿𝑦
𝛿𝑥𝑗

= 2∑𝑖=1
𝑛 𝑒𝑥𝑝 �(𝒙−𝒙𝒊)′(𝒙−𝒙𝒊)

ℎ
� �𝑥𝑗 − 𝑥𝑖𝑗�. Hence, the non-

linear transformation encodes a type of epistasis that is not 
represented by the linear modes of, say, Cockerham (1954).  

In theory, epistasis is important for phenotypic 
prediction, but less so for selective breeding. This is 
because epistasis involving additive effects is transmitted 
from parents to offspring according to the rule �1

2
�
𝑚

. For 
instance, for additive × additive × additive epistasis, m=3. 
This rule holds in some ideal world with absence of 
selection, mutation, assortative mating and linkage 
(Kempthorne, 1954), so it is not known with certainty how 
epistasis is transmitted in finite populations undergoing 
artificial or natural evolutionary processes. The “additivity 
rules the waves” from Hill et al. (2008) should be taken 
with caution, as it may be more reflective of limitations of 
variance components models than of the biology 
underpinning a trait. Prudent construction of predictive 
machines should not rule out epistasis a priori.  
 Akdemir (2014) compared single with multi-
kernel approaches in five data sets representing wheat, 
mice, barley, rice and maize, and concluded that “similar or 
better accuracies were observed for a number of 
populations compared to single kernel models”. 

Parameter estimation and predictive ability. 
Bayesian implementations of RKHS are in Gianola and van 
Kaam (2008) and can be run in the BGLR package of de los 
Campos and Perez-Rodriguez (http://bglr.r-forge.r-
project.org). The Bayesian approach requires creative 
assignment of priors to all parameters. An alternative is a 
likelihood-based machinery. If regression coefficients are 
taken as jointly normal, the likelihood function stems from 
the marginal distribution 𝒚|𝜎𝛼2, 𝜎𝝐2, 𝒉~(𝟎,𝑲𝜎𝛼2 + 𝑹𝜎𝝐2), and 
the variance and bandwidth parameters can be estimated by 



maximum likelihood. Liu et al. (2007) give a fairly standard 
implementation of restricted maximum-likelihood with an 
application to prostate cancer. They had data on age of 
patient and tumor differentiation plus information on some 
pathway involving 5 genes. The pathway information was 
embedded into a Gaussian kernel with a single bandwidth 
parameter. In our experience, the asymptotic correlation 
between estimates of h and of the variance 𝜎𝛼2  is strong, 
which is also revealed when MCMC scans for these two 
parameters are compared. Also, the bandwidth parameter 
may be estimated with great uncertainty, so it seems 
dangerous to take a point estimate as if it were “true”. A 
practical course of action is use of a grid of h values and, 
for each h, estimate 𝜎𝛼2  and carry out a cross-validation. 
After all, our concern is predictive ability as opposed to 
inference since, as argued before, it is doubtful that much 
inferential meaning can be extracted from complex systems 
via blatantly over-parameterized models. 

Assuming values of the dispersion and bandwidth 
parameters have been arrived at, the BLUP of 𝜶 and of the 
marked signal 𝑲(𝒙, 𝒉)𝜶  can be obtained by the standard 
“strong-arm” method: 

𝐵𝐿𝑈𝑃(𝜶|𝜎𝛼2, 𝜎𝝐2, 𝒉)= �𝑲 + 𝑹𝜎𝜖2

𝜎𝛼2
�
−𝟏
𝒚 ,  

This shows that the inverse of 𝑲 is not needed. If one uses 
Henderson’s equations (assume fixed effects have been 
accounted for in some pre-processing, but of course can be 
included in the model), the RKHS solution can also be 
calculated as 

 𝛼� = �𝑲𝑹−1𝑲 + 𝑲𝜎𝜖2

𝜎𝛼2
�
−𝟏
𝑲𝑹−1𝒚 

= �𝑹−1𝑲 + 𝑰 𝜎𝜖
2

𝜎𝛼2
�
−𝟏
𝑹−1𝒚.  

Since BLUP is linearly invariant, the genetic signal is fitted 
as 𝑲𝛼�.   Extension of likelihood-BLUP machinery to 
multiple kernels is not innovative as the principles of mixed 
model methodology have been well established by decades. 
 Typically, predictive ability is assessed using some 
cross-validation scheme (its design is more an art than a 
science) where one divides data into training and testing 
sets, with random repeats or bootstrapping, to measure 
uncertainty. The model is fitted with training data and 
phenotypes are “masked” in the testing set. Phenotypes 
𝒚𝑇𝑒𝑠𝑡  in the testing set are predicted as  𝒚�𝑇𝑒𝑠𝑡 = 𝑲𝑇𝑒𝑠𝑡,𝑇𝑟𝑎𝑖𝑛 
𝛼� . Subsequently, 𝒚𝑇𝑒𝑠𝑡  and 𝒚�𝑇𝑒𝑠𝑡  are used to measure 
“accuracy” of prediction, often via some correlation metric. 
A large predictive correlation does not necessarily reflect 
accuracy of prediction. For instance, methods A and B for 
predicting time to death after a cancer is metastasized may 
produce a correlation of 0.8, but say that A over-predicts by 
an average of 2 years. Obviously, B is accurate whereas A 
is not.  Also, animal and plant breeders are often interested 
in tail or “center” behavior. Hence, examination of 
confusion matrices (Jimenez-Montero et al., 2013) or use of 
classification algorithms (Ornella et al., 2013) may be more 
informative than across the board mean squared error or 
correlation. 

Model averaging. In Bayesian and classical 
theory (e.g., Hoeting et al., 1999; Sorensen and Gianola, 
2002) it is well established that averaging over models can 

produce more accurate predictions (in the sense of 
closeness, not correlation) than use of a single model. 
Claeskens and Hjort (2008) wrote: “Most [model] selection 
strategies work by assigning a certain score to each 
candidate model. In some cases there might be a clear 
winner, but sometimes these scores might reveal that there 
are several candidates that do almost as well as the winner. 
In such cases there may be considerable advantage in 
combining inference output across these best models”. 
Tusell et al. (2014) examined the ability of predicting yet-
to-be observed litter size (pig) and grain yield (wheat) 
records using several RKHS regression models with 
different numbers of Gaussian or t kernels. Predictions were 
combined using three different types of model averaging: 
(i) mean of predicted phenotypes obtained in each model, 
(ii) weighted average using the reciprocal of mean squared 
error in a tuning set (training-tuning-testing design) as 
weight, or (iii) using the marginal likelihood as weight, 
estimated via MCMC. Phenotypes were 2598, 1604 and 
1879 average litter size records from three commercial pig 
lines and wheat grain yield of 599 lines evaluated in four 
macro-environments. SNPs from the PorcineSNP60 
BeadChip and 1447 DArT markers were the inputs for the 
pig and wheat data analyses, respectively. Gaussian and t 
kernels had similar predictive performance. Multi-kernel 
RKHS regression models increased the predictive 
correlation of RKHS by 0.05 when 3 Gaussian or t kernels 
were fitted simultaneously. None of the averaging strategies 
improved the predictive correlations attained with the 
multi-kernel kernel fitting. Carre et al. (2014, this volume) 
combined predictions from this study into a predictive 
meta-algorithm, finding a marginal improvement in 
predictive ability, in terms of correlation, mean-squared 
error or area under the curve. 

 Tentative conclusion: multi-kernel RKHS fitting 
constitutes a practical and robust predictive strategy. 
 

Evidence 
What follows is not the result of a comprehensive 

review of literature, but is fairly prototypical of findings 
obtained so far. While there have been fairly extensive 
comparisons among members of the Bayesian alphabet, 
e.g., Lehermeier et al. (2013), which also includes an 
assessment of sensitivity with respect to priors, similar 
studies involving RKHS are lacking, especially with 
animals. Gonzalez-Recio et al. (2008, 2009) found a 
slightly better predictive ability of RKHS over parametric 
methods for early mortality and feed efficiency in broilers. 
However, differences were within the range of the noise 
stemming from the cross-validation distribution. Heslot et 
al. (2012) compared many prediction methods, including 
ridge-regression BLUP, Bayes C-pi and RKHS (neural 
networks and support vector machines were included as 
well) using 18 plant breeding data sets. On average, most 
methods produced the same predictive correlations (see 
Table 2 of their paper), corroborating the view in Gianola 
(2013) that well-constructed predictive machines differ by 
little. However, an “across the board” evaluation is not the 
best way of comparing methods. For example, using figures 
from Heslot et al. (2012), if a scatter plot is made for the 18 
pairs of predictive correlations, RKHS was better than 



either ridge regression BLUP (mild differential shrinkage of 
markers) or Bayes C-pi (a “variable selection” procedure, 
although not strictly so because every marker receives a 
non-zero posterior probability of inclusion in the model) in 
16 of such comparisons. This suggests that some methods 
are consistently better, given a specific prediction problem.  

Perez-Rodriguez et al. (2012) compared the 
Bayesian LASSO, Bayesian ridge regression, Bayes A and 
Bayes B with RKHS, Bayesian regularized neural networks 
(BRNN), and radial basis function neural networks 
(RBFNN). Models were compared using 306 elite wheat 
lines genotyped with 1717 markers and days to heading 
(DTH) and grain yield (GY) as traits, measured in each of 
12 environments. The non-linear models had better overall 
predictive ability than the linear regressions. Results in 
Table 2 of their paper speak by themselves. 

Genotyping-by-sequencing (GBS) can deliver 
marker genotypes with less ascertainment bias than SNP 
arrays. Crossa et al. (2013) evaluated methods for 
incorporating GBS information, and compared these with 
pedigree models for predicting genetic values of lines from 
two maize populations using different traits measured in 
different environments. Methods were compared using non-
imputed, imputed, and GBS-inferred haplotypes of different 
lengths. GBS and pedigree data were incorporated into 
statistical models using either GBLUP or RKHS and 
prediction accuracy was assessed via cross-validation. 
GBLUP and RKHS models with pedigree with non-
imputed and imputed GBS data provided the best predictive 
correlations for the three traits in their experiment 1, 
whereas for experiment 2 RKHS provided slightly better 
predictions than GBLUP for drought-stressed 
environments, and both models provided similar predictions 
in well-watered environments. This illustrates again that 
RKHS can be at least as good as GBLUP. 

Gonzalez-Camacho et al. (2012) using high 
density markers evaluated RBFNN, RKHS, and the additive 
Bayesian LASSO on 21 maize data sets. Results indicated a 
slightly but consistently higher predictive correlation of 
RKHS (0.552) over RBFNN (0.542) and the Bayesian 
LASSO model (0.542). 
 In plant breeding there has been much interest in 
incorporating genotype × environment interaction in 
marker-assisted prediction models and in structuring 
environmental information. Jarquin et al. (2013) used a 
“reaction norm” model in which a matrix of similarities 
among environments Ώ was introduced. This method was 
applied to 139 wheat lines genotyped with 2,395 markers 
with 68 environmental conditions modeled. Genotype × 
environment interaction was fitted by constructing a 
Hadamard product matrix, essentially a RKHS 
representation.  Predictive ability was much increased by 
accommodating the environmental and interaction inputs 
 

Conclusion 
There does not seem to a uniformly best prediction 

machine: predictive ability varies with species, environment 
and trait. Often, variation is due to huge cross-validation 
noise. As illustrated in the study of human stature by 
Makowsky et al. (2011), a model with 400,000 markers 
captured about 80% of the variability in training data, but 

not more than 20% of that present in testing sets. With such 
an enormous noise, it is dangerous to ascribe meaning in 
terms of “genetic architecture” to what might be a transient 
predictive superiority of a method based on some arbitrary 
prior, constructed to reflect some idealized vision on gene 
action. Rather, as noted by Breiman (1996), it is crucial to 
be cognizant of the sensitivity of predictions to data 
idiosyncrasy. The latter can be tempered by combining 
bootstrapping with some robust method, and experience 
suggests that the latter is multi-kernel RKHS regression. 
Gianola et al. (2014) found that “bagging” (bootstrap 
aggregated sampling) may temper over-fitting without 
damaging predictions, as well as produce candidate specific 
measures of cross-validation reliability. 

Quantitative genetics is primarily a descriptive and 
predictive science but, arguably, has not been too effective 
for discovery of genes, especially when compared with the 
astonishing record of molecular genetics. On the other 
hand, the explosive availability of genomic and post-
genomic data provides means for refining and enhancing 
prediction of complex traits, an exciting area per se, but not 
too amenable to reductionist reasoning or experimentation. 
The greatest opportunities for this predictive approach seem 
to reside in veterinary, human and plant protection 
applications, as society is increasingly concerned with the 
potential adverse effects from carbon, methane and water 
footprints of production agriculture. 
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