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ABSTRACT: Low-density SNP chip panels are appealing 
tools for reduction of genotyping costs. Imputation enables 
to predict missing genotypes to recreate the coverage of 
high density panels and it is a tool in genomic selection by 
allowing for more animals to be genomically evaluated and 
for larger training datasets. In addition, imputation could 
also increase power of genome-wide association studies. 
Several studies have been carried out in Canada, providing 
practical direction on the implementation of imputation 
strategies in dairy and beef cattle, including crossbred beef 
cattle. A large nation-wide project has created the core 
reference populations of 50k, high density, and sequence 
genotypes to enable accurate imputation from low density 
panels in the major beef breeds and composites in Canada. 
These reference populations associated with the developed 
imputation methods and pipelines will create the foundation 
for genomic selection through genome wide imputation in 
beef cattle. 
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Introduction 
Imputation enables the determination of SNP 

genotypes that have not been directly genotyped by a low 
density panel by inferring missing genotypes using 
information from a reference population genotyped with a 
higher density panel (Servin and Stephens (2007), Li et al. 
(2009), Hickey et al. (2011)). Imputation methods can be 
used as a tool in genomic selection, allowing for more 
animals to be genomically evaluated and for larger training 
datasets. In addition, imputation could also increase power 
of genome-wide association studies by allowing more 
individuals to be genotyped (Li et al. (2009)). 

Imputation methods differ with respect to the use 
of information on the relationship between individuals 
(family information) and/or the use of linkage 
disequilibrium (LD) among markers without knowledge of 
relationships (population information) (Hayes et al. (2012)). 
The application of imputation algorithms that use 
population information has been reported in several papers, 
such as Calus et al. (2011) (Beagle and fastPhase), Howie et 
al. (2012) (Impute2), Zhang et al. (2010) (DagPhase) 
among others, while research on imputation algorithms 
using family and population information has been reported, 
for instance, by Sargolzaei et al. (2010) (FImpute), 
Nicolazzi et al. (2013) (PedImpute), and VanRaden et al. 
(2013) (FImpute and findHap). Although various 
imputation studies have been completed in dairy cattle, 
relatively fewer studies have been conducted in different 
beef cattle breeds and crossbreds (e.g. Berry et al. (2013)).  

Several studies have been carried out in Canada 
aiming to provide practical direction on the implementation 
of imputation strategies in dairy and beef cattle, including 
crossbred beef cattle populations.  Low density commercial 
SNP chip panels from different densities were evaluated to 

impute higher density panels, using alternative algorithms 
programed into available software packages. 

More recently, the availability of whole-genome 
sequence data could potentially improve the accuracy of 
genomic predictions by capturing the causal mutations 
affecting a trait, without dependence on the extent of LD 
between SNP markers and causal mutations (Meuwissen 
and Goddard (2010), Druet et al. (2013)). A cost effective 
sequencing strategy is to sequence key ancestors, who 
contributed most of the genetics in the current population, 
combined with a random sample of individuals and, then, 
impute sequence data to the rest of the animals genotyped 
with commercial SNP chips. The 1,000 Bull Genomes 
Project (http://www.1000bullgenomes.com/) aids the goal 
of using whole-genome sequence genotypes by providing 
an extended cattle sequence database of key ancestors from 
several breeds.  

The possible increase in accuracy of genomic 
predictions and fine mapping of causative QTL/QTN by 
using imputed sequence data is dependent on the accuracy 
of imputation and, therefore, it is important to evaluate 
imputation from SNP chip panels to sequence genotypes 
both in terms of accuracy and computational efficiency. In 
Canada studies on imputation from 50k and HD SNP panels 
to sequence genotypes have been carried out to assess 
accuracy and computing efficiency of alternate methods. 

This short paper will present and discuss some of 
the studies on genome wide imputation in Canadian cattle, 
with emphasis on beef cattle.   
 

Genome wide imputation 
Imputation algorithm. Genotype imputation can 

help reduce genotyping costs particularly for 
implementation of genomic selection and fine map of 
causative QTL/QTN. In applications involving large 
populations, inferring the genotypes of ungenotyped loci 
using information from reference individuals that were 
genotyped with a higher density panel is computationally 
demanding. The most popular imputation methods are 
based upon Hidden Markov models and have computational 
limitations due to an intensive sampling process (e.g., 
Beagle, fasPhase, Impute2). A fast deterministic approach 
was developed in Canada (Sargolzaei et al. (2011a)) and 
was recently described in  Sargolzaei et al. (2014), which 
makes use of both family and population information. The 
algorithm assumes that all individuals are related and, 
therefore, share haplotypes which may differ in length and 
frequency based on their relationships. The method starts 
with family imputation if pedigree information is available, 
and then exploits close relationships by searching for long 
haplotype matches in the reference group using overlapping 
sliding windows. The search continues as the window size 
is shrunk in each chromosome sweep in order to capture 
more distant relationships (Sargozaei et al. (2014)). 



 

 

Figure 1. Overall allelic r2 for FImpute, Beagle and 
Impute2 across different imputation scenarios. There were 
2000 and 500 young target individuals for imputation from 
6k to 50k and from 50k to 300k, respectively. In scenarios 
A and F, reference groups with different sizes were 
randomly chosen after excluding parents and grandparents. 
The reference group in scenarios B and C included only 
parents and grandparents, in scenarios D and E it included 
all genotyped males and in scenarios G and H it included all 
genotyped individuals. Pedigree information was 
considered in scenarios C, E and H and was disregarded in 
scenarios B, C and G. (Adapted from Sargolzaei et al. 
(2014)) 

 
Figure 2. Rare allele imputation: allelic r2 in different MAF 
bins for FImpute and Impute2. Scenarios as described in 
Figure 1. (Adapted from Sargolzaei et al. (2014)). 

 
This algorithm was programed in the FImpute 

software (Sargolzaei et al. (2011a)). Sargolzaei et al. (2014) 
showed that FImpute gave higher or similar imputation 
accuracy than Beagle 3.3.2 (Browning and Browning 
(2009)) and Impute2.3 (Howie et al. (2011)) in Holstein 
cattle data sets when all available information was used. 
When close relatives of target individuals were present in 
the reference group, the method resulted in higher accuracy 

compared to the other two methods even when the pedigree 
was not used (Figure 1). Rare variants were also imputed 
with higher accuracy, especially when compared to Impute2 
(Figure 2- results for FImpute and Impute2). Beagle 
showed intermediate values between these two software. 
Computing requirements for FImpute were only a small 
fraction of those of Beagle and Impute2 (Figure 3). 
 

 
Figure 3. CPU time for Beagle, Impute2 and FImpute over 
different reference sizes. No pedigree information was used 
and genotyped parents and grandparents were excluded. 
 
 FImpute is currently used for imputation from low 
density panels to 50k SNP genotypes in routine genomic 
evaluations of dairy cattle in Canada by the Canadian Dairy 
Network (www.cdn.ca). 

SNP chip genotypes. In Canada, application of 
low density genotyping started with the Illumina 
GoldenGate Bovine3k BeadChip SNP panel (3k) (Illumina 
Inc., San Diego, CA, USA) in dairy cattle, mainly for 
genotyping cows and heifers, but also for some pre-
screening of young bulls. Therefore, early research and 
development of imputation technology in Canada started 
with the 3k panel, aiming to impute the genotypes from the 
Illumina Bovine SNP50 BeadChip SNP panel (50k) 
(Illumina Inc., San Diego, CA, USA). Because of the low 
density of the 3k panel, accuracy of imputation was 
dependent on whether or not parents were genotyped 
(Sargolzaei et al. (2010a,b)). The average concordance rate 
(CR) was very high (>0.98) only when both parents were 
genotyped with the 50k panel, but still few animals had low 
accuracy of imputation. The use of family + population 
imputation led to higher CR (>0.90) for those animals with 
low accuracy, but this was still dependent on both parents 
being genotyped with 50k panel (Sargolzaei et al. (2011b)). 
Ventura et al. (2011) showed that for crossbred beef cattle, 
the 3k panel would lead to very low imputation accuracy to 
the 50k panel in crossbred beef cattle (Figure 4). 

With the release of the Illumina Bovine 6k 
BeadChip panel (6k) (Illumina Inc., San Diego, CA, USA), 
imputation studies in Canada focused on the imputation 
from this panel to the 50k panel in both dairy and beef 
cattle. The 6k panel resulted in substantially higher 
accuracy for animals with low family information, 
especially for those with both parents missing or 



ungenotyped (Sargolzaei et al. (2011b); Ventura et al. 
(2014)).  

 

 
Figure 4. Accuracy of imputation (concordance rate) of 
Illumina 50k genotypes from alternate low density 
genotypes (Illumina 3k or 6k) in crossbred beef cattle using 
Beagle software. (Adapted from Ventura et al. (2011)) 

 
A comprehensive study on imputation from 6k to 

50k panel genotypes in beef cattle was conducted by 
Ventura et al. (2014). This study showed that imputation 
from 6k to 50k SNP panel could be successfully applied in 
beef cattle. In this study population imputation was 
implemented using Beagle 3.3.2, FImpute 2.2.2 and 
Impute2.2 in a multi-breed, crossbred taurine beef cattle 
population genotyped with the 50k panel. Different 
combinations of reference populations and imputed animals 
were defined based on breed composition. Number of 
animals (n=250 to 4,932) and the presence of closer 
relatives in the reference population (only for Angus 
animals) were investigated. The overall average imputation 
accuracy for purebred animals ranged from 94.2 to 97.9% 
using FImpute, from 95.4 to 98.3% using Impute2 and from 
90.0 to 96.4% when Beagle was used. The individual 
imputation accuracy of crossbred animals widely ranged 
from 54.2 to 97.5% (FImpute), from 57.0 to 97.5% 
(Impute2) and from 54.4 to 95.6% (Beagle). For accurate 
and less variable imputation accuracy of crossbred animals, 
a large reference population, which represent well the breed 
composition of imputed animals, was required (Figure 5). 
Within breed imputation from 6K to 50K did not improve 
when additional purebred breeds were added to the 
reference population. FImpute reduced the run-time by 13 
to 52 times compared to Beagle and 51 to 108 times 
compared to Impute2.  

The use of alternate low density panels, such as the 
8k GGP panel (Neogen Corporation, Lansing, MI, USA), 
was also investigated and showed some advantage in terms 
of increased accuracy for imputation of crossbred animals 
(Figure 6). Mullen et al. (2013) reported increased accuracy 
of imputation using a customized low density panel 
(International Dairy-Beef 19 (IDB19)) compared to the 6k 
panel for imputing HD panel genotypes in cattle breeds. 

Accuracy of imputation from lower density SNP 
panels (6K or 50K) to Illumina Bovine HD Beadchip (HD) 
(Illumina Inc. San Diego, CA, USA) genotypes was 
examined both within breed and using a multi-breed 
reference population in Holstein, Ayrshire, and Guernsey 

by Larmer et al. (2014). Imputation was carried out using 
FImpute V2.2 and Beagle 3.3.2 software. Imputation 
accuracies were calculated as both concordance rate and 
allelic r2. Computation time was also explored to determine 
the efficiency of the different algorithms for imputation. 
High CR (0.968–0.995) and allelic r2 (0.946–0.991) were 
found for all breeds when imputation was carried out with 
FImpute from 50K to HD. Imputation accuracy for 
Guernsey and Ayrshire was slightly lower when using the 
imputation by Beagle. Computing time was significantly 
greater when using Beagle software, with all comparable 
procedures being 9 to 13 times less efficient, in terms of 
computing time, compared to FImpute. These findings 
suggested that the HD genotypes can be efficiently and 
effectively imputed using the lower density 50K SNP panel 
in cattle. 
 

 
Figure 5. Effect of reference dataset size on the average 
accuracy (concordance rate) from Illumina 6k to 50k 
genotypes in crossbred animals using Beagle, FImpute and 
Impute2. (Adapted from Ventura et al. (2014)) 

 

 
Figure 6. Accuracy of imputation (concordance rate) of 
Illumina 50k genotypes from alternate low density 
genotypes (Illumina 6k and GGP 8k) in crossbred beef 
cattle using FImpute software. (Dr. R. Ventura, personal 
communication). 

 
Recently Berry et al. (2014) investigated 

imputation of un-genotyped parental genotypes in dairy and 
beef cattle from progeny genotypes using FImpute 2.2. This 
might be useful for, for instance, imputing genotypes of 
influential females with no available biological material for 
sampling DNA. Two separate datasets were used, one 
containing both dairy and beef animals (n=3,122) with high 
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density genotypes (~735k SNPs) and the other containing 
just dairy animals (n=5,489) with medium density 
genotypes (~52K SNPs). Imputation accuracy, based on 
CR, of three different genotype density panels was 
evaluated representing low (6k), medium (50k), and high 
(HD) density. When genotypes were not available on 
individual animals, but at least five progeny were 
genotyped (on either 50k or HD panel) the parental alleles 
were imputed with on average ≥96% accuracy. The 
accuracy of imputing parental genotypes from genotyped 
half-sib progeny groups was on average 98% when 12 
genotyped half-sib progeny were available. Hence, 
genotypes of descendants may be used for imputing the 
genotypes of ancestral animals with phenotypes with 
reasonably high accuracy. 
 

 
Figure 7. Accuracy of imputation (concordance rate) of 
high density genotypes (Illumina (HD), Affymetrix (BOS 
1), and Join Panel- HD+BOS 1) from alternate low density 
genotypes in crossbred beef cattle. (Adapted from Ventura 
et al. (2013)) 

 
VanRaden et al. (2013) reported an accuracy of 

93.5% and 95.1% for imputation of HD genotypes of 
ungenotyped dams that had 4 or more genotyped progeny in 
Holsteins. Accuracy further improved with imputation first 
to 50K and then to HD instead of all together (1.6 
percentage points). 

 Ventura et al. (2013) looked at the imputation 
from 50k panel to Illumina HD panel or Affymetrix 
Axiom® Genome-Wide BOS 1 SNP panel (Affymetrix, 
Santa Clara, CA, USA) and to the join Illumina+Affymetrix 
panels, using 96 crossbred beef cattle and FImpute. 
Concordance rate was quite similar from 50k to HD, Bos1 
or the join HD+Bos1 panel (ranging from 91.0% - 91.7%) 
(Figure 7). Accuracy of imputation of the join HD+Bos1 
panel from either of the two high density panels was very 
high and similar (98.0% – 98.3%).    

Accurate imputation is a key to ensuring that the 
benefits from more markers exceed the imputation loss 
because gains from HD are small (VanRaden et al. (2013)) 

Sequence genotypes. Li et al. (2014) used the 
most recent run of the 1,000 Bull Genomes Project (run 3), 
which included 429 full genome sequences of 427 bulls and 
2 cows from 15 breeds, sequenced at an average of 10.1 
fold coverage, to evaluate accuracy of imputation from 50k 
and HD to sequence genotypes. There were 30.8 million 
filtered sequence variants detected, including 29.1 million 

SNPs and 1.7 million insertion-deletions. The sequence 
data across all breeds included 28,336,153 SNP on 
autosomal chromosomes. Six breeds with more than or 
equal to 25 sequenced animals were used in the study, 
which included Angus, Brown Swiss, Holstein, Jersey, 
Limousin, and Simmental.  

Accuracy of genotype imputation from 50k or HD 
to whole-genome sequence genotypes was investigated. 
Different scenarios were evaluated by masking sequence 
genotypes to mimic animals genotyped with HD and 50k 
SNP chips, resulting in 658k and 47k SNPs in the 
mimicked HD and 50k SNP chips, respectively. FImpute 
2.2 and Beagle 3.3.2 programs were used and their 
performances in terms of imputation accuracy and 
computational efficiency were compared. Accuracy of 
imputation was assessed by both CR and allelic r2. In order 
to evaluate the effect of increasing the number of reference 
animals on the accuracy of sequence genotype imputation, a 
combined multi-breed reference population was used to 
impute each breed using FImpute.  

Due to the high computing time required for 
Beagle, FImpute and Beagle were only compared using a 
single cross-validation, randomly selecting a validation set 
corresponding to about 20% of the sequenced animals in a 
breed. However, all the imputation scenarios were cross-
validated by 5-fold cross-validation using FImpute only.  
 
Table 1: Single and multi-breed sequence imputation 
from HD or 50k SNP chip using FImpute, SNPs with 
MAF>0, and 5-fold cross-validation. (Adapted from Li 
et al. (2014))  

Breed1 HD2  50k2 
CR r2  CR r2 

Single Breed reference population 
AN 92.7 89.2  86.9 80.2 
BS 92.7 88.9  84.5 76.2 
HO 94.8 92.6  90.0 85.5 
JE 92.0 87.0  83.6 73.2 
LI 86.4 79.7  75.3 62.9 
SI 92.4 89.4  83.9 77.0 

Mean 91.8 87.8  84.0 75.8 
Multi-breed reference population 

AN 93.3 90.2  86.1 78.9 
BS 93.6 90.4  83.7 75.0 
HO 94.9 92.7  89.2 84.4 
JE 93.2 89.2  82.3 70.9 
LI 89.7 85.3  76.7 65.4 
SI 93.0 90.4  83.6 76.7 

Mean 92.9 89.7  83.6 75.2 
1Breed= Angus (AN), Brown Swiss (BS), Holstein (HO), Jersey (JE), 
Limousin (LI), and Simmental (SI) 
2CR= Concordance Rate; r2= allelic r2 

 
As expected, imputation from the HD SNP chip to 

sequence genotypes was substantially more accurate by 7.8-
9.3 percentage points in CR and 12-14.5 percentage points 
in allelic r2 than from the 50k SNP chip (Table 1, for 
FImpute). For Beagle, the differences were even more 
pronounced, being about twice that for FImpute. FImpute 
was slightly more accurate than Beagle for imputation from 
HD by 1.6 percent points of CR and 3.1 points of allelic r2. 



For sequence genotype imputation from 50k, however, the 
same features were much larger reaching 9.6 and 19.6 
percent points, respectively (Li et al. (2014)).  

Beagle required much longer computing time than 
FImpute. In addition, FImpute required less memory, about 
5 Gigabyte per chromosome for imputation from both HD 
and 50k panel, while Beagle took more than 80 Gigabyte of 
memory per chromosome. As an example, the CPU time for 
HD to sequence imputation in Angus cattle with 44 
reference animals and 10 validation animals took more than 
14 hours using Beagle, while it took about 2 hours using 
FImpute without parallel computation (Li et al. (2014)). 

Results for single-breed and multi-breed reference 
populations (Table 1) showed an increase in imputation 
accuracy using multi-breed reference population (1.9 and 
2.1 percent points of CR and allelic r2) for imputing from 
HD genotypes. The observed increase was even more 
substantial for breeds with the lowest reference sets. 
Imputation accuracy from 50k genotypes, however slightly 
decreased (-0.4 and -0.6 percent points of CR and allelic r2), 
which indicates that the 50k panel was not dense enough to 
capture small haplotypes shared among the breeds. HD to 
sequence imputation using either FImpute or Beagle 
resulted in higher and more balanced CR and allelic r2 
across breeds than 50k chip (Table 1). 

In Canada a nation-wide project entitled “Whole 
genome selection through genome wide imputation in beef 
cattle” began in 2011 with the goal of developing low cost 
genome wide selection methodologies for Canada's cattle 
industry. The project sequenced 378 key ancestors that have 
significant genetic influence on the current Canadian herds 
from Angus, Charolais, Hereford, Limousin, Simmental, 
Gelbvieh and Holstein breeds, and Beef Booster, Alberta 
composite, and Guelph composite cattle (minimum of 30 
ancestors per breed/composite); and genotyped about 5,000 
key animals on high density panel (with a minimum target 
of 500 per breed/composite) and about 5,000 animals on 
50K SNP panel. Adding genotypes from international 
collaborators and co-funding in the project, a total of about 
12,000 high density genotypes (using both Illumina and 
Affymetrix panels) and 19,000 50k genotypes will be 
available for imputation purposes. In collaboration with the 
1000 bull genomes project, over 450 genome sequences 
will be used for imputing 50k animals to high density and 
then to sequence genotypes. The high accuracy of 
imputation from 50k to high density and from high density 
to sequence genotypes found in the research carried out so 
far is encouraging and will provide foundation for genome 
selection through genome wide imputation in beef cattle in 
Canada. 

 
Conclusion 

Several studies have been carried out in Canada, 
providing practical direction on the implementation of 
imputation strategies in dairy and beef cattle, including 
crossbred beef cattle. A large nation-wide project has 
created core reference populations of 50k, high density, and 
sequence genotypes to enable accurate imputation from low 
density panels in the major beef breeds and composites in 
Canada. These reference populations associated with the 
developed imputation methods and pipelines will create the 

foundation for genomic selection through genome wide 
imputation in beef cattle in Canada. 
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