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ABSTRACT: Whole-genome sequences and multiple trait 
phenotypes from large numbers of individuals will soon be 
available in many populations. Well established statistical 
modeling approaches enable the genetic analyses of com-
plex trait phenotypes while accounting for a variety of 
additive and non-additive genetic mechanisms. These mod-
eling approaches have proven to be highly useful to deter-
mine population genetic parameters as well as prediction of 
genetic risk or value. We present a series of statistical mod-
elling approaches that use prior biological information for 
evaluating the collective action of sets of genetic variants. 
We have applied these approaches to whole genome se-
quences and a complex trait phenotype resistance to starva-
tion collected on inbred lines from the Drosophila Genome 
Reference Panel population. We identified a number of 
genomic features classification schemes (e.g. prior QTL 
regions and gene ontologies) that provide better model fit 
and increase predictive ability of the statistical model for 
this trait.  
Keywords: Genomic feature models; whole-genome se-
quences; data integration 
 
 

Introduction 
 

Whole-genome sequences and multiple trait pheno-
types from large numbers of individuals will soon be avail-
able in many populations. Simultaneously a large number 
of genome-wide molecular profiling experiments provide 
molecular phenotypes (e.g. levels of RNA, protein, metabo-
lites, phosphorylisation, glycosylation, or methylation) that 
are associated to the trait of interest. Genome-wide molecu-
lar interaction maps (e.g. protein-protein, protein-DNA or 
protein-metabolite interactions) provide insight into the 
structural and functional organization of the genome. These 
data should in principal allow a detailed molecular charac-
terization of the genetic variability at the sequence level and 
should enable us to investigate several fundamental aspects 
of the genetic architecture of complex traits.  
 

Evidence collected across genome-wide association 
studies reveals patterns that provide insight into the genetic 
architecture of complex traits (e.g. Lango et al. 2010). Alt-
hough many genetic variants with small or moderate effects 
contribute to the overall genetic variation it appears that the 
sequence variants associated with trait variation are en-
riched for genes that are connected in biological pathways. 
Another important finding is that multiple independently 
associated variants are located in the same genes and that 
the associated variants are enriched for likely functional 

effects on genes such as altered amino-acid structure of 
proteins and expression levels of nearby genes.  

 
Well established statistical modeling approaches en-

able the genetic analyses of complex trait phenotypes while 
accounting for a variety of additive and non-additive genet-
ic mechanisms. These modeling approaches have proven to 
be highly useful to determine population genetic parameters 
as well as prediction of genetic risk or potential of complex 
trait phenotypes. Further research is required to better un-
derstand how and to what extent it is useful to use prior 
biological information for improving these modeling ap-
proaches. 

 
In this paper we present a series of statistical mod-

elling approaches that use prior biological information for 
evaluating the collective action of sets of genetic variants. 
We have applied these approaches to whole genome se-
quences (~ 2.5M SNPs) and a complex trait phenotype 
resistance to starvation collected on ~200 lines from the 
Drosophila Genome Reference Panel population. In addi-
tion we have access to a wealth of annotation data that can 
be used to link the SNPs to different types of genomic fea-
tures (e.g. genes, biological pathways, prior QTL regions, 
gene and sequence ontologies, and so on). Our hypothesis is 
that there exist genomic features that provide better model 
fits and better predict the complex trait phenotypes.   

 
Materials and Methods 

 
Data. The phenotypic- and genomic data used origi-

nate from a public available reference population, the Dro-
sophila melanogaster Genetic Reference Panel (DGRP) 
(Mackay et al. (2012)). The population was originally 
caught in Raleigh, North Carolina, USA and consists of 168 
fully inbred (F≈1), independent lines, and obtained using 20 
generations of full-sib mating.  
 

Initially SNPs were called from raw sequence data 
(as described in Mackay et al. (2012)) and included with 
coverage greater than 2X but less than 30X for which the 
minor allele frequency was present in at least 4 lines and if 
the SNP was called in minimum 60 lines. Missing geno-
types were imputed using Beagle Version 3.3.1 software 
(Browning and Browning (2009)). The observed SNPs 
spanned a region of 23.0 Mb on 2L, 21.1 Mb on 2R, 24.5 
Mb on 3L, 27.9 Mb on 3R and 22.4 Mb on X. This corre-
sponds to 20.89 SNP pr Kb.  
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SNP sets were defined based on a number of ge-
nomic feature classification schemes including prior QTL 
information and gene and sequence ontologies. 

 
We used resistance to starvation as phenotypes in 

our analysis. Resistance to starvation is a measure of how 
long time it takes before a fly dies due to food deprivation. 
Ten same sex, 2-days old flies were placed in vials contain-
ing a solution of 1.5% agar and 5 ml water to avoid the flies 
dies of dehydration. Every eight hour the survival rate was 
scored. Sample size is 17,324 observations with 10 flies in 
5 vials/sex/line (Mackay et al. (2012)).  

 
Statistical analyses 

 
            Well established statistical modeling approaches 
enable the genetic analyses of complex trait phenotypes 
while accounting for a variety of additive and non-additive 
genetic mechanisms. We apply three statistical modelling 
approaches that evaluate the collective action of sets of 
SNPs on the trait phenotypes using genomic features (e.g., 
genes, QTL regions from previous studies or biological 
pathways).  
 
            Approach 1: In the first approach we initially per-
form a genome-wide association analysis of single variants 
using the following linear mixed model: 
  

𝐲 = 𝐗𝐛 + 𝐙𝐠 + 𝐬! + 𝐞                (M1) 
 

where y is the vector of phenotypic observations, X and Z 
are design matrices linking the fixed effect (sex and repli-
cate) and random genetic effect (line) to the phenotypic 
records, b, the vector of fixed effects of sex and replicate, 𝐬! 
is the additive genetic effect of the ith SNP, the random 
effect of lines  𝐠~N 0, 𝐈𝜎!! , and residuals 𝐞~N 0, 𝐈𝜎!! . The 
additive genetic effect of each SNP was assessed by com-
paring the full model (M1) to a null model excluding the 
SNP effect using a likelihood ratio test.  
 

The single variant analyses are followed by multi-
variant analyses. This is done by grouping the single variant 
test statistics in sets using information on genomic features. 
For each set we construct an appropriate summary statistic 
that measures the degree of association between the set of 
variants and the phenotypes. We consider two summary 
statistics. The first summary statistic is the total number of 
likelihood ratio tests within a genomic feature that is above 
a certain threshold. The threshold for all tests was 6.635 
corresponding to a marginal p-value of 0.01 assuming that 
the likelihood ratio test statistic has an approximate χ2-
distribution with 1 degree of freedom. The second summary 
statistic was the sum of all likelihood ratio test statistics 
belonging to the same genomic feature.  

 
The observed the summary statistics for a particular 

SNP set is compared to the empirical distribution for the 
summary statistic of random samples of sets of SNPs. Test 
statistics for closely linked SNPs will likely be highly cor-

related due to linkage disequilibrium. This will affect the 
distribution of the observed summary statistics. To account 
for this correlation structure we used the following proce-
dure for obtaining the empirical distribution of the summary 
statistic. Let the vector of observed test statistics be ordered 
according to the physical position on the genome for the 
corresponding SNPs. SNPs are mapped to genes using the 
coordinates for the physical location of the genes on the 
genome. Let the elements in this vector be numbered 
1,2,…,N. The permutation consists of the following two 
steps. First, randomly pick an element from this vector. Let 
this jth test statistic be the first element in the permuted 
vector and the remaining elements ordered j, j+1, j+2,.,N, 1, 
2,…j-1 according to the original numbering. All the ele-
ments from the original vector of test statistics are now 
shifted to a new position. Second, a summary statistic is 
computed for each SNP set based on the original SNP posi-
tion in the test statistic vector. In this way the link between 
the SNPs and the genes is broken while maintaining the 
correlation structure among the test statistics. These two 
steps are repeated k=10000 times. From this empirical 
distribution of the summary statistic for each SNP set a p-
value can be obtained. The empirical p-value for a one-

Figure 1. The “Black box” modeling approach works 
on the individual SNP level and treats all SNPs equally. 
The “Genomic feature” modeling approach accounts 
for the correlations among SNPs by grouping them 
according to genomic features such as A) location in 
transcriptionally active genomic regions, B) sequence-
based prediction of deleteriousness, C) location in ge-
nomic regions found to be associated to the complex 
trait in previous GWAS studies, D) location in coding 
(exons, introns), non-coding or regulatory (e.g. promot-
ers, transcription factor binding sites) regions, or E) 
location in genes part of biological complexes (PPI), 
pathways (KEGG) or modules (co-expression). Ge-
nomic parameters (G) such as variances, correlations 
and heritabilities are estimated for each layer of infor-
mation using statistical models. 
 



 

 

sided test is equal to the proportion of the randomly sam-
pled summary statistic values that are larger than the ob-
served summary statistic.  
 

Approach 2: In the second approach we use a linear 
mixed model to identify genetic variation in genomic fea-
tures that is associated to a complex trait phenotype (Figure 
1).  
 
This is done by fitting the following linear mixed model: 
 

𝐲 = 𝐗𝐛 + 𝐙𝐢𝐠𝐢 + 𝐙!𝐢𝐠!𝐢 + 𝐞            (𝐌𝟐) 
 

where y is the phenotypic observations, X is design matrix 
linking, b, the vector of fixed effects of sex and replicate to 
the phenotypic records, Z! and Z!! are design matrices link-
ing phenotypic records to the random genetic effects g!, for 
the set of markers belonging to the genomic feature of in-
terest and g!! for remaining set of markers. In this full 
model the random genetic effects and the residuals are 
assumed to be independent normally distributed variables 
such that   g!~N 0,G!𝜎!! , g!!~N 0,G!!𝜎!!! , and residuals 
e~N 0, I𝜎!! . The corresponding additive genomic relathi-
onship matrices G! and G!! are constructed from the subset 
of markers as: 
 

𝐆𝐢 = 𝐖𝐢𝐖𝒊
!
𝐍 𝐢

 

 
where W! is the centred and scaled genotype matrix, and N! 
the number of markers  for i’th SNP set.  The full model is 
compared to a reduced model where we estimate one genet-
ic variance component defined by all the markers using the 
following linear mixed model:  
 

𝐲 = 𝐗𝐛 + 𝐙𝐠 + 𝐞            (𝐌𝟑) 
 

             In the reduced model all markers are considered 
equal with respect to their contribution to the genetic vari-
ance. The linear mixed model approach allows us to use a 
likelihood ratio test to compare different genomic feature-
based partitioning of the genomic variance. Likelihood 
ratios were calculated as twice the difference between the 
log-transformed restricted likelihood of the simple model 
(M3) and full model (M2). It has been shown that the like-
lihood ratio test statistic follows a mixture of χ2 distribu-
tions with one or two degrees of freedom (Self & Liang 
(1987)). An alternative way to assess the importance of the 
ith SNP set is the proportion of explained genetic variance 
of the ith set defined as 𝐻!! = 𝜎!!/(𝜎!! + 𝜎!!! ). Finally the 
importance was assessed using a tenfold cross validation 
procedure.  
 
            Approach 3: The third approach builds on the linear 
mixed model (M3) described in the previous section. The 
difference is that the genetic parameters are estimated using 
an iterative REML procedure (Wang et al. (2012)) based on 
a weighted genomic relationship matrix, G, constructed 
using all SNP markers as: 

𝐆 = 𝐖𝐃𝐖!/𝐍, 
 

where W is the centred and scaled genotype matrix, D is a 
diagonal matrix containing the weight for each SNP, and N 
is the sum of the diagonal elements D. The SNP weights 
were initially set to unity. In subsequent iterations, each 
SNP was weighted according to its variance contribution 
equal to the squared SNP effect. The individual SNP effects 
were obtained from: 
 

𝐛 = 𝐃𝐖′(𝐖𝐃𝐖!)!𝐠, 
 
where b is the vector of estimated SNP effects. In each 
iteration the log-likelihood for the fitted model was deter-
mined and this iterative procedure was repeated until we 
observed a decrease in model fit as determined by a de-
crease in the log-likelihood. During this process the values 
of b  become more extreme and should result in SNPs that 
are causative, or highly correlated to the causative genetic 
variant, having a high weight in the model disregarding 
whether the effect on the trait is positive or negative. We 
determined a genetic value for each SNP set defined by the 
genomic feature using: 
 

𝐠 = 𝐠! + 𝐠!𝒊 = 𝐖𝒊𝐛 +𝐖!𝒊𝐛 
 
where g! is the genetic value associated to the i’th SNP set 
and g!! denotes the genetic values associated to the remain-
ing SNPs. From these partitioned genetic values we decom-
posed the genomic variance using: 

  

𝐕𝐚𝐫(𝐠) =
𝐕𝐚𝐫(𝐠𝐢) 𝐂𝐨𝐯(𝐠𝐢, 𝐠!𝐢)

𝐂𝐨𝐯(𝐠!𝐢, 𝐠𝐢) 𝐕𝐚𝐫(𝐠!𝐢)
 

 
           We determined the relative importance of the SNP 
set as the average genomic variance explained by each SNP 
in the set calculated as: 

 
𝛄(𝐠𝒊) = 𝐕𝐚𝐫(𝐠𝐢)/𝐍𝐢 

 
           This approach gives us a framework where we can 
easily decompose the variance contributed by different 
types of genomic feature classification schemes.  
 
           Implementation. The various genomic feature mod-
elling approaches was implemented in R (R Core Team. 
(2013)) using the software package DMU (Madsen & Jen-
sen (2012)) as computational engine for some of the vari-
ance components analysis.  
 

Results and Discussion 
 
           In this paper we have used three statistical modelling 
approaches that evaluate the collective action of sets of 
SNPs on the trait phenotypes. Using a linear mixed model-
ing approach we partitioned he genomic variance into com-
ponents defined by Sequence Ontology (e.g. intron, exon), 
degree of association as determined in a traditional genome-
wide association analysis (e.g. associated or not associated) 



 

 

and genes grouped according to function as defined by 
Gene Ontology information (Figure 2). Using Sequence 
Ontology information we found that non-synonymous  
genetic variants explained a larger proportion of the ge-
nomic variance and provided a better model fit. Further-
more SNPs found to be associated to the complex trait 
phenotypes in a genome-wide association analysis provide 
a better model fit and increase the predictive ability of the 
statistical model.  
 

Partitioning using Gene Ontology (GO) information 
identified several genomic features that explained  a large 
proportion of the genomic variance and increased the pre-
dictive ability compared to a statistical model that include 
all genomic variants in one variance component.  

 
The genomic feature model analyses were imple-

mented using standard mixed model methodology and 
estimation of variance components was done using a Re-
stricted Maximum Likelihood approach. The linear mixed 
model approach is used to identify genetic variation in gene 
groups that is associated to a complex trait phenotype. This 
is done by fitting and comparing two statistical models. In 
the full model we estimate two genetic variance compo-
nents; one variance component for the set of markers de-
fined by the random gene group and one variance compo-
nent for remaining set of markers. In the reduced model we 
estimate one genetic variance component defined by all the 
markers. In the reduced model all markers are considered 
equal with respect to their contribution to the genetic vari-
ance whereas in the full model we allow the two markers 
sets to be weighted differently. The weight is proportional 
to the proportion of variance explained by the marker set 
estimated from the data being analyzed. We use a likeli-
hood ratio test to compare these two models. A high likeli-
hood ratio shows that the model with two (different) vari-
ance components is better at explaining the observed genet-
ic variance than the simple model with only one variance 
component. We interpret this as the ability to separate the 
‘genetic signal’ (governing the complex trait) from the 
background noise of the genome, i.e. a high likelihood ratio 
has successfully separated the signal from the noise. In our 
analyses we found in that a partitioning that provided a 
better model fit also leads to a better predictive ability of 
the statistical model. This result may depend on the popula-
tion structure being investigated.     

 
There are several alternative statistical modeling 

approaches that can be used to evaluate the collective action 
of multiple genetic variants in genomic features (Wang et 
al. (2010), Wu et al. (2011), Newton et al. (2007), Jiang & 
Gentleman (2007), Ehsani et al. (2012), Silver & Montana 
(2012), Friedlye & Biernacka (2012)).  These approaches 
can be classified according to the input data required, statis-
tical method used and the null hypothesis being tested. We 
compared our linear mixed model approaches to a common-
ly used two-step approach and found a relatively good 
agreement between the approaches (Figure 3). However, 
the variance decomposition based on the iterative REML 
procedure requires further investigation.  

A 

 
B 

 
C 

  
Figure 2. A) A linear mixed model approach for parti-
tioning of genomic variance using prior biological infor-
mation. A) Partitioning using Sequence Ontology infor-
mation revealed that non-synonymous genetic variants 
explained a large proportion of the genomic variance. B) 
SNPs ranked according to their degree of associated to 
the complex trait phenotypes in a genome-wide associa-
tion analysis provide a better model fit (LRT) and in-
crease the predictive ability (PA) of the statistical model. 
C) Partitioning using Gene Ontology information identi-
fied several terms that explained  a large proportion of 
the genomic variance and increased the predictive ability 
compared to a statistical model that include all genomic 
variants in one variance component. 



 

 

 
Figure 3. Comparison of test statistics from three statis-
tical modeling approaches for evaluating the collective 
action of multiple genetic variants in genomic features. 
For the two step approach there was a high correlation 
between the minus log of the empirical p-values for 
summary statistic 1 (-logP1) and for summary statistic 2 
(-logP1) using genomic features defined by Gene Ontol-
ogy. For both summary statistics a marginal p value cut-
off of 0.05 is indicated by a horizontal or vertical black 
line. In comparison we have plotted results based on the 
linear mixed approaches showing genomic features that 
1) provide better model fit (M2; LRT>3.84) (red dots), 
2) with the highest average genomic variance explained 
by each SNP (M3, Top50) (light blue dots), or 3) fulfil 
both criteria (LRT>3.84 & Top50) (light green dots).  
 
 
           The two-step approach is widely used because it is 
computationally fast and can easily be combined with asso-
ciation results obtained from previous GWAS. In the first 
step, a test statistic for the association (e.g. t-statistics, p-
values) of individual genetic variants with the trait pheno-
type is obtained from traditional single-marker or all-
marker statistical models. In the second step, for each ge-
nomic feature being tested, a summary statistics is obtained.  
The summary statistics should reflect the degree or level of 
association. We considered two summary statistics. The 
first summary statistic was the total number of likelihood 
ratio tests within a genomic feature that is above a certain 
threshold. Alternatively a Hyper geometric test can be used 
to compare the frequency of significantly associated vari-
ants located within or outside the genomic feature (Jiang & 
Gentleman (2007), Newton et al. (2007)). However, there is 
the arbitrariness of the threshold for determining “signifi-
cantly associated”, no matter how it is chosen and genetic 
variants whose test statistics differ by a tiny amount may be 
treated completely differently. By design this test will have 
high power to detect association if the genomic feature 

harbor genetic variants with large effects, but it will not 
detect a situation where there are many genetic variants 
with small to moderate effects. In this case, it is more pow-
erful to use a summary statistic such as the mean or sum of 
the test statistic for all genetic variants belonging to the 
same genomic feature (Newton et al. (2007)).  
 

Conclusion 
 
           We identified a number of genomic features classifi-
cation schemes (e.g. prior QTL regions and gene ontolo-
gies) that provide better model fit and better predicted the 
complex trait phenotype, resistance to starvation, in Dro-
sophila melanogaster. 
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