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ABSTRACT: Average daily body weight (DBWAvg; 
n=676) and adjusted daily feed intake measurements (DFIAdj 
; n=846) from FIRE (Feed Intake Recording Equipment, 
Osborne Industries, Inc., Osborne, KS, USA) stations were 
used to identify genomic regions that impact these traits and 
their relative change across the growth trajectory in Duroc 
boars. Single-step genomic BLUP with Legendre polynomi-
als (order=2) were utilized to model the trajectory and esti-
mate variance components. The EBVs for Legendre regres-
sion coefficients were used to estimate SNP variance for the 
intercept, slope and curvature. Estimated heritability across 
age ranged from 0.03 to 0.40 and 0.06 to 0.24 for DBWAVG 
and DFIADJ. Multiple genomic regions were identified that 
impact the intercept and shape of the growth or feed intake 
trajectory. The use of age dependent genomic information 
allows for selection to be placed across the trajectory to alter 
growth and feed intake curves.  
Keywords: swine; random regression; genome-wide associ-
ation study 
 
 

Introduction 
 

Growth and feed intake are economically important 
traits for many livestock species and the estimation of indi-
vidual growth or feed intake curves allows for selection to 
be placed across varying points of the trajectory. The use of 
longitudinal data analysis techniques to analyze growth or 
feed intake allows for the (co)variance structure to change 
across time. Previous research has proved the advantages 
from random regression models for growth and feed intake 
(Haraldsen et al. (2009); Schnyder et al. (2002); Wetten et 
al. (2012)) in order to select for different trajectories.  

 
The use of genomic information to infer the esti-

mated breeding value of an individual, referred to as ge-
nomic-EBV (DGV), has become a routine practice in multi-
ple livestock species due to the rapid expansion and cost-
effectiveness of genotyping technology. The majority of all 
traits utilized when estimating DGV are measures occurring 
at a single time point or averaged across time points. The 
use of genomic information in longitudinal type  traits has 
been performed in chickens (Wolc et al. (2013)) and dairy 
cattle (Tetens et al. (2012)), although a limited amount of 
research has been done in swine. Also genome-wide associ-
ation mapping across the growth trajectory has  the potential 
to identify regions that have an effect only at a certain age 
along with regions that impact the trait consistently.  
 

 Previous research has used deregressed EBV 
across various ages regressed on genotypes to identify re-
gions affecting milk yield (Tetens et al. (2012)) and replace 
the pedigree derived relationship matrix with a genomic re-
lationship matrix to estimate DGV (Wolc et al. (2013)). An 
alternative approach would be to use single-step genomic 
BLUP (Aguilar et al. (2010)) and estimate SNP variance for 
the intercept, slope and curvature from the estimated Legen-
dre regression coefficients in one step, as outlined in Wang 
et al. (2012). The objective of this study is to use single-step 
genomic BLUP with Legendre polynomials to model 
growth and feed intake curves and to conduct a genome-
wide association study (GWAS) on the Legendre regression 
coefficients. 

 
Materials and Methods 

 
 Data. Electronic FIRE (Feed Intake Recording 
Equipment, Osborne Industries, Inc., Osborne, KS, USA) 
station feed intake and weight measurements on 1,047 Du-
roc boars from July 22, 2007 to March 16, 2011 were ini-
tially utilized as described by Jiao et al. (Submitted). It has 
been previously reported electronic feeders are prone to er-
rors for weight (Zumbach et al. (2009)) and feed intake (Ca-
sey et al. (2005)). Therefore feed intake editing techniques 
developed by Casey (2003) and Casey et al. (2005) were 
used to identify and remove errors. The remaining feed in-
take observations within each day were summed and adjust-
ed (DFIadj) to account for feed consumed during the visits 
that were removed based on the regression equation outlined 
by Casey (2003, Chapter 2). Lastly, animals with less than 
25 DFIadj observations and DFIadj records greater than 4.5 kg 
were removed. Utilizing robust regression weight was fit to 
a quadratic regression of on-test day and linear regression of 
on-test age and weights that were zero were removed from 
the analysis as outlined by Zumback et al. (2009). Lastly, 
on-test ADG was computed by regressing age on weight and 
values less than .4 kg or greater than 2.0 kg were removed 
and the remaining weights were averaged by day (DBWAvg). 
The final number of animals was 846 (n= 52,719 observa-
tions) and 676 (n= 40,988 observations) for DFIAdj and 
DBWAvg, respectively. The average (±SD) number of obser-
vations was 62.3 (±16.1) and 60.3 (±15.6) for DFIAdj and 
DBWAvg, respectively. Genotyping of the DNA samples was 
performed using Illumina PorcineSNP60K BeadChip (Illu-
mina Inc., San Diego, 150 CA, USA) as described by Jiao et 
al. (Submitted). The SNP unmapped to the swine genome 
build 10.2 and SNP on sexual chromosomes were excluded 



from the analysis, resulting in 35,140 SNP utilized in the 
analysis. 
 

Statistical Analysis. Legendre polynomials (order 
= 2) were used to model trajectory of growth and feed in-
take across age. Analysis was carried out utilizing gibbs3f90 
(Misztal (2008)) for 800,000 iterations with the first 
200,000 discarded as burn-in and post-burn in samples were 
extracted every 60 iterations. Age was blocked into 7 clas-
ses (~14 days per class) and a heterogeneous variance struc-
ture was fit across time. The model for DFIadj and DBWAvg 
was,  

 
𝑌!"#$% =𝜇 +   𝐶𝐺! + 𝑃𝑒𝑛! + 𝑃𝑎𝑟𝑖𝑡𝑦! + 𝜙!"#𝛽!!

!!!  
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where Yijmn was DFIadj or DBWAvg, µ was average, CGi was 
the fixed effect of concatenation of birthyear and season, 
Penj was the fixed effect of Pen, Paritym was the fixed effect 
of parity(1,2,3+), 𝛽!  was the fixed regression coefficient, 
𝑢!" was the effect of animaln, 𝑝𝑒!" was the permanent envi-
ronmental effect of animaln and 𝑒 was the residual. The ef-
fect 𝜙!"#  is the kth Legendre polynomial for animaln at 
ageo. It was assumed 𝑢 ~ N(0, H ⊗ G), where G was a 3x3 
(co)variance matrix for the animal Legendre polynomials 
and 𝑝𝑒 ~N(0, I ⊗ P), where P was a 3x3 (co)variance ma-
trix for animal permanent environmental Legendre polyno-
mials. Construction of the H matrix consisted of blending a 
3-generation pedigree-derived numerator relationship matrix 
and a genomic relationship combined with weighting factors 
of 0.995 and 0.005, respectively (Aguilar et al. (2010)). The 
genomic relationship matrix was created using the method 
outlined by Van Raden (2008) were marker contribution is 
weighted by its expected variance. 
 

Genome-Wide Association Mapping. Estimated 
breeding values for Legendre regression coefficient were 
used to estimate SNP effects as outlined by Wang et al. 
(2012), 𝑢  = DZ’[ZDZ’]-1𝑎!, where D is a diagonal matrix of 
weights for variance of SNP, Z is a matrix relating geno-
types of each locus to animaln, and 𝑎! is the EBV for Le-
gendre regression coefficient for animaln. Individual vari-
ance for SNPi was estimated as: 𝜎!!

! = 𝑢!
! ∗ 2𝑝!𝑞! , where 𝑝! 

and 𝑞! are the allele frequencies of SNPi for the two alleles. 
SNP effects were blocked into sliding windows of 10 SNPs 
and genetic variances within each window (n = 34,959) 
were summed for each polynomial regression coefficient. 
The 5 largest 10-SNP sliding window variances were ex-
tended by 1 Megabase (Mb) in both directions to locate po-
tential candidate genes.  

 
Results and Discussion 

 
 The estimated heritability ranged from 0.03 to 0.40 

and 0.06 to 0.24 for DBWAVG and DFIADJ across age and the 
average heritability within each age class is outlined in Ta-
ble 1. The range of heritability estimates is in line with pre-
vious results for both traits (Haraldsen et al. (2009); Schny-
der et al. (2002); Wetten et al. (2012)). The genetic correla-

tion across the age classes were moderate to highly positive 
(rg ≥ 0.50) throughout the growth curve, but become moder-
ate to largely negative (rg ≤ -0.50) for the beginning and end 
of the growth curve. Therefore genes that have an effect on 
the early part of the trajectory are not consistently affecting 
the trait later in the trajectory. Due to this, locating genes 
that affect a trait across time using a single measure to char-
acterize the entire trajectory may not be advantageous and 
furthermore the estimates are biased due to heterogeneity of 
effect across ages. 

 
Table 1. Estimated heritability by age (days) class for 
adjusted daily feed intake (kg) and daily weight (kg). 
 Age Class2 

Trait1 1 2 3 4 5 6 7 
DBWAvg 0.36 0.39 0.29 0.22 0.16 0.09 0.04 
DFIAdj 0.15 0.08 0.08 0.09 0.08 0.07 0.07 
1 DBWAvg  refers to average daily body weight and DFIAdj refers to adjusted 
daily feed intake measurements. 
2 Age was blocked into 7 classes with approximately 14 days in each class. 

 
Table 2. Top 5 largest 10 SNP sliding window variance 
for adjusted daily feed intake (kg). 

Polynomial Chromosome Location 
(Mb1) Candidate Genes 

𝛽! 

1 168 SOCS6, DOK6 
1 256 GNCT1 
4 127 AMY2B 

9 145 LPGAT1, 
PPP2R5A 

13 6  

𝛽! 

2 79 OBSCN 
5 2 SULT4A1 
9 1 TUB 

9 145 LPGAT1, 
PPP2R5A 

12 56 PIK3R6 

𝛽! 

1 256 GNCT1 
6 55 GALP 

12 56 PIK3R6 
13 6  
15 2  

1 Location refers to the start position in Megabases of the 10-SNP sliding 
window derived from swine genome build 10.2. 

 
The 5 largest 10-SNP sliding window variances along 

with potential candidate genes for the intercept (𝛽!), slope 
(𝛽!), and curvature (𝛽!) are outlined in Table 2 and Table 3 
for DFIadj and DBWAvg, respectively. The top 2.5% (n=875) 
sliding windows that were in close proximity to the top 5 
10-SNP sliding windows were included in the estimate of 
proportion of variance explained (i.e. subset divided by total 
10-SNP sliding windows) by the top 5 10-SNP sliding win-
dows. Sliding windows were utilized to account for the var-
iability in LD across the genome and to remove the chance 
of splitting a window in two, as is the case with using prede-
fined window lengths. For DFIadj the percent of variance ex-
plained by the top 5 10-SNP sliding windows were 0.021, 
0.024, and 0.022 for the intercept, linear and quadratic re-
gression coefficient. The window located on SSC1 (168 
Mb) for the DFIadj intercept coefficient was also found to be 



significantly associated with ADFI by Jiao et al. (Submit-
ted). A large portion of the regions had candidate genes 
within the enlarged 3 Mb window and in particular func-
tions related to mucosal gastrointestinal tract homestatis 
(GNCT1; Yoshihisa et al. (2012)), stimulation of feed intake 
from the hypothalamus (GALP; Kuramochi et al. (2006)), 
and late onset of obesity in humans (TUB; Snieder et al. 
(2008)). For DBWAvg the percent of variance explained by 
the top 5 10-SNP sliding windows were 0.047, 0.030, and 
0.030 for the intercept, linear and quadratic regression coef-
ficient. A region on SSC1 (270 Mb) harbors the TGFBR1, 
which has been previously found to be associated with ADG 
and multiple carcass traits (Chen et al. (2012)). Lastly, a re-
gion on SSC8 (46 Mb) has the gene CPE, which has been 
shown to be associated with obesity and insulin regulation 
(Cool et al. (1997)). 

 
Table 3. Top 5 largest 10 SNP sliding window variance 
for daily weight (kg). 

Polynomial  Chromosome Location 
(Mb1) 

Candidate 
Genes 

𝛽! 

1 285 SAL1 
9 3 DNHD1 
9 8 STARD10 
17 7 ASAH1 
17 13 SLC20A2 

𝛽! 

6 120  
9 3 DNHD1 
9 8 STARD10 
17 7 ASAH1 
17 13 SLC20A2 

𝛽! 
 

1 270 TGFBR1  
2 145 SMAD5 
7 127  
8 46 CPE, SC4MOL 
8 64  

1 Location refers to the start position in Megabases of the 10-SNP sliding 
window derived from swine genome build 10.2. 

 
Conclusion 

 
 It has been shown that the use of genomic infor-
mation to estimate an animal’s growth curve is possible. 
Furthermore the effect of a SNP is transient throughout the 
trajectory and different weighting schemes can be utilized to 
alter growth and feed intake curves across the trajectory. 
Future research will involve combining DBWAVG and 
DFIADJ along with carcass traits in order generate a gene 
network for the combination of growth, feed intake and car-
cass traits. 
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