April 21, 2022

Interpretive Summary: Oxidation of amino acids, glucose, and fatty acids as metabolic fuels in enterocytes of post-hatching developing chickens

Interpretive Summary: Oxidation of amino acids, glucose, and fatty acids as metabolic fuels in enterocytes of post-hatching developing chickens

By: Wenliang He, Kyohei Furukawa, Christopher A. Bailey, and Guoyao Wu

Glucose and fatty acids have long been regarded as the primary sources of energy for the absorptive epithelial cells (enterocytes) of the avian small intestine. However, little is known about the use of amino acids for ATP production in these cells. Based on studies with mammalian enterocytes, we hypothesize that aspartate, glutamate, and glutamine provide the bulk of energy for the enterocytes of post-hatching developing chickens. To test this hypothesis, we isolated jejunal enterocytes from 0-, 7-, 21-, and 42-d-old male broiler chickens and performed metabolic studies. Our results indicated that: (1) glutamate (an amino acid) was the major energy source for the enterocytes of post-hatching chickens, (2) the biological oxidation of other amino acids (glutamine, aspartate, and alanine) was limited in chicken enterocytes, (3) glucose was the second most important metabolic fuel in chicken enterocytes, and (4) chicken enterocytes had a limited ability to degrade fatty acids but oxidized more long-chain fatty acids than short-chain fatty acids. We conclude that glutamate is the major source of energy in the enterocytes of post-hatching developing chickens.

Read the full article in the Journal of Animal Science