Interpretive Summary: Differential analysis of immunoglobulin gene expression pattern in chickens of distinct breeds and developmental periods
By: Yanbo Qiu, Xiaohua Yi, Xiaoqin Tang, Yanpei Wei, Beibei Zhang, Shunan Duan, Shuhui Wang, Xiuzhu Sun
Immunoglobulins play a key role in the organism’s defense against pathogens, and their diverse expression allows the body to generate a wide array of antibodies. This diversity serves as a critical safeguard for the immune system against various pathogens. Natural geographical variances and artificial breeding and selection can potentially lead to different immune responses in distinct populations of the same species when confronted with the same pathogen. In this study, we investigated the diversity of immunoglobulin gene expression in the natural state of different chicken breeds (Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens) and at different periods from the perspective of immunoglobulin gene expression mechanism. We analyzed the diversity of immunoglobulin based on the results of high-throughput sequencing by extracting Fabricius bursa RNA, RACE (Rapid Amplification of cDNA Ends) technique, and constructing DNA libraries. Our study reveals that the junctional diversity, somatic hypermutation, CDR3 diversity, and gene conversion expression of immunoglobulins in Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens converge during the same time period. This indicates that the immunoglobulin gene expression mechanisms in different chicken breeds do not exhibit significant variations as a result of selective breeding.
Read the full article in the Journal of Animal Science.